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Abstract—Mission-critical voice (MCV) communications sys-
tems have been a critical tool for the public safety community
for over eight decades. Public safety users expect MCV systems
to operate reliably and consistently, particularly in challenging
conditions. Because of these expectations, the Public Safety
Communications Research (PSCR) Division of the National
Institute of Standards and Technology (NIST) has been interested
in correlating impairments in MCV communication systems
and public safety user quality of experience (QoE). Previous
research has studied MCV voice quality and intelligibility in a
controlled environment. However, such research has been limited
by the challenges inherent in emulating real-world environmental
conditions. Additionally, there is the question of the best metric
to use to reflect QoE accurately.

This paper describes our efforts to develop the methodology
and tools for human-subject experiments with MCV. We illustrate
their use in human-subject experiments in emulated real-world
environments. The tools include a testbed for emulating real-
world MCV systems and an automated speech recognition (ASR)
robot approximating human subjects in transcription tasks. We
evaluate QoE through a Levenshtein Distance-based metric,
arguing it is a suitable proxy for measuring comprehension and
the QoE. We conducted human-subject studies with Amazon
MTurk volunteers to understand the influence of selected system
parameters and impairments on human subject performance and
end-user QoE. We also compare the performance of several ASR
system configurations with human-subject performance. We find
that humans generally perform better than ASR in accuracy-
related MCV tasks and that the codec significantly influences
the end-user QoE and ASR performance.

I. INTRODUCTION

Mission-critical voice (MCV) communications systems, or
land-mobile radio (LMR), are a critical tool for the public
safety community, including firefighters, police, emergency
services, and disaster responders. The community has been
relying on LMR systems for more than eight decades. Yet,
despite considerable technological differences, LMR systems
generally rely on half-duplex two-way push-to-talk (PTT)
radios with individual and group talk capabilities. “Public
safety users have an expectation that these systems will
function for them reliably and consistently, particularly when
performing difficult job tasks in challenging conditions and
stressful situations. Unlike commercial cellular systems, LMR
systems have been optimized to operate with a high probability
of successful transmission and reception for the users.” [1]

The Public Safety Communications Research (PSCR) Di-
vision of the National Institute of Standards and Technology
(NIST) has been interested in correlating impairments in the
MCV communication system and public safety user quality
of experience (QoE). Previous research has studied MCV
voice quality and intelligibility in a controlled environment.
However, such environments typically cannot emulate real-
world operating environments, i.e., deployed MCV communi-
cation systems and channel conditions. NIST PSCR seeks to
develop the tools, methodology, and datasets to understand the
influence of a broader set of MCV system impairments (e.g.,
channel access time) on the public safety user QoE.

The traditional method to evaluate end-user QoE relies on
human-subject studies performed in a controlled environment
emulating the real-world environment [2]. In the study, human-
subject volunteers interact with the communication system
under the supervision of an experimenter. The study generates
data that are then evaluated to answer research questions and
prove or disprove hypotheses about the technology’s suitability
for a particular communication model or scenario. The choice
of which metric to use to characterize end-user QoE in the
first place is also a question to be considered. The “quality"
of a user’s experience is an inherently subjective matter, and
the choice of method to characterize it is ultimately the choice
of the designer of the experiment.

We present our efforts to develop the methodology and
tools for human-subject experiments with MCV and illustrate
their use in human-subject experiments as well as choose
a metric to measure end-user QoE. The tools include a
configurable testbed for emulating real-world MCV commu-
nications systems and an automatic speech recognition (ASR)
robot capable of approximating human-subject performance
in listening transcription experiments. The metric we use for
QoE evaluation is fundamentally based on the Levenshtein
Distance [3] metric, which is a way of quantifying the “edit
distance" between two strings. We conduct two human-subject
studies to understand the influence of system parameters, such
as the selected voice codec, and impairments, such as the bit
error rate (BER), on human subject performance and the end-
user QoE. We perform listening (transcription) experiments
with local human subjects, remote Amazon MTurk human
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subjects, and an ASR robot emulating human behavior.
We find that human subject performance consistently de-

clines as the bit error burst size increases under the P.25 Phase
2 codec but not the AMR wideband codec. Humans perform
consistently better than all tested ASR robot configurations,
and the difference is especially apparent for large bit-error
bursts.

The rest of the paper is organized as follows. In Section II,
we provide a brief motivation for the research. Section III
discusses the study’s overall purpose. Section IV describes the
experimental setup and procedures and a brief overview of the
Levenshtein distance algorithm used in the experiments. This
is followed by a short discussion of the analytical techniques
and methodology in Section V. Sections VI and VIII present
and discuss the results obtained in our experiments. We sum-
marize related work in Section IX. Section X then concludes
the paper and discusses future work.

II. MOTIVATION

Two-way push-to-talk (PTT) radios, known as land-mobile
radio (LMR), have been a staple of public safety communi-
cations for over eight decades. LMR systems represent the
currently deployed mission-critical voice (MCV) communica-
tions solution. Unlike more modern cellular systems, LMR
systems have been optimized to maximize the probability of
successful transmission. The public safety community expects
these systems to function consistently and reliably, particularly
in challenging environments.

The public safety community has considered transitioning
the aging LMR infrastructure to broadband communications
infrastructure. Before the transition can happen, it is necessary
to understand the influence of key performance indicators
(KPIs) such as network access time (PTT delay), mouth-to-
ear delay (MtE), or codec performance under varying bit error
rate (BER) on end-user quality of experience (QoE), and their
relationship to task completion or success rate.

Establishing a relationship between KPIs and QoE is typ-
ically performed in human-subject studies in a controlled
environment [4]. During the study, the controlled environment
(testbed) systematically varies the KPIs while the subject
(study participant) uses the communication system emulated
by the testbed to accomplish a communication-dependent task.
One a metric is chosen to measure QoE, the subject’s accuracy,
perceived QoE, and other data collected during the experiment
can then be used to relate KPIs to QoE. Conducting such
human-subject studies is time-consuming and logistically and
administratively challenging. The software tools needed to
create a testbed with sufficient accuracy and flexibility are
generally unavailable.

Establishing appropriate initial KPI values is also challeng-
ing. If the resulting audio is too easy or hard for the study
participants to understand, not much can be learned about the
influence of the KPIs on QoE. Better methods are needed to
establish initial KPI value ranges without relying on human
feedback.

III. OVERALL STUDY PURPOSE

The overall purpose of this study is to develop the method-
ology, tools, and public data sets to help the public safety
community understand the influence of communication system
parameters such as network access time (PTT delay), bit error
rate (BER), background noise, and codecs on end-user quality
of experience and their impact on the perceived and actual
performance of tasks in a field environment.

We designed a testbed to emulate realistic channel and
network conditions and used it to conduct a series of listening
and interactive studies with human-subject volunteers. We then
use the collected data to assess the influence of the selected
impairment factors on the subjects’ ability to understand the
transmitted message.

The study investigates the influence of factors such as the
voice codec, BER, and frame drop rate on the accuracy of a
transcription task performed by the test subject.

IV. EXPERIMENTAL SETUP AND PROCEDURES

A. Mission-Critical Voice Testbed

The MCV testbed is a hardware and software architecture,
shown in Fig. 1, designed to support human-subject QoE
studies with MCV. The testbed supports interactive two-
way and listening one-way communication scenarios. In an
interactive experiment, the participants communicate through
the testbed’s user terminals (shown in Fig. 1) while trying to
accomplish a task. In a listening experiment, the participants
transcribe information from a series of impaired audio record-
ings as accurately as possible. The testbed emulates varying
communication channel conditions by adjusting mouth-to-ear
(MtE) delay, push-to-talk (PTT) button delay, codecs, bit error
rate, background noise, and other parameters influencing end-
user QoE.
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Fig. 1. Mission-critical voice testbed architecture. The diagram shows a
configuration with two user terminals.

Listening experiment participants are sent a unique URL
and access the experiment through a web-based user interface
(UI), as shown in Fig. 2. The UI presents a randomized
series of impaired audio recordings. Each recording can only
be played once. The participant is asked to extract some
information from the recording as accurately as possible and
enter it into the testbed’s UI. The accuracy of the response will



depend on the impairments applied to the audio recording. We
then estimate the effects of the applied impairments on speech
intelligibility by analyzing response accuracy.

Fig. 2. Testbed web user interface for listening experiments

The web-based UI runs in the participant’s browser and
communicates with the testbed through an HTTP-based API.
The API provides access to the experiment metadata and audio
recordings and is also used to submit responses entered by the
participant.

B. Automatic Speech Recognition Robot

The automatic speech recognition (ASR) robot is a program
that emulates human test subjects. The robot obtains experi-
ment metadata and impaired audio recordings from the testbed,
converts audio to text using either OpenAI Whisper [5] or
Google Speech-to-Text (STT) [6] engines, extracts the answer
from the transcribed text, and submits the answer back to the
testbed as a real human test subject would. Figure 3 illustrates
the robot’s architecture.
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Fig. 3. Automatic speech recognition (ASR) robot architecture.

At a high level, the robot is a custom Python program
coupled with a third-party ASR engine. The program com-
municates with the testbed via its HTTP REST API. This
is the same API that powers the web UI, i.e., the robot has
access to the same data as human test subjects and can also
submit answers to the testbed through the same API. The robot
can be configured to use either Whisper or Google STT. The
robot runs the Whisper engine locally. When Google STT is
selected, the robot interacts with the engine over the Internet.
The transcribed text may contain errors in the form of missing
or incorrect words.

The robot contains an internal experiment-specific text pro-
cessing component (parser), which takes the transcribed text
and produces an answer for the robot to submit back to the

testbed. All our experiments involve New Jersey (NJ) license
plate numbers encoded in the NATO phonetic alphabet [7].
Thus, we only implement a single parser for this purpose.
The parser expects text with a known lead sentence followed
by a NATO-encoded NJ license plate number. It extracts and
returns the license plate number.

1) Levenshtein Distance: The Levenshtein Distance [3] is
a metric for quantifying the difference between two strings.
It is defined as the minimum number of insertions, deletions,
and/or character substitutions required to change one string
to the other. The Levenshtein distance is similar to other
“edit distance" type metrics such as the Hamming Distance;
we found it is particularly well suited as a measure of QoE
for the task at hand. With license experiments, we are less
interested in testing for syntactical similarity and care more
about phonetic similarity–the Levenshtein distance gives little
penalty to strings that are similar in structure but “shifted" by
the addition or deletion of extra characters.

As detailed below, to compute our final QoE metric, we
extract tokens of text with the ASR robot and measure the
Levenshtein distance between these text tokens and NATO
alphabet words.

2) Measuring QoE: The parser first splits the transcribed
text into words using the Natural Language Toolkit (NLTK)
library’s [8] Treebank word tokenizer. Each transcription is
supposed to start with the lead sentence “Reporting license
place”. The parser removes the lead sentence, any words with
a Levenshtein distance smaller than three to the lead sentence
words, and any words from the NLTK English stop word
corpus. The remaining tokens represent a NJ license plate
number encoded in the NATO phonetic alphabet.

Errors in the transcription process (due to the impairments)
could produce tokens that cannot be directly mapped to NATO
alphabet words. We use an approximate-matching algorithm
that maps each token to the most likely NATO alphabet word.
The algorithm first computes the BLEU score [9] (with the
exponential decay smoothing method) and the Levenshtein
distance between the token and each NATO phonetic alphabet
word. The two metrics are converted to a score, and the
algorithm chooses the NATO phonetic alphabet word with the
best score. Equation 1 formalizes this approach:

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑊𝑜𝑟𝑑 = arg max
𝑥∈𝑁

(𝑠𝑐𝑜𝑟𝑒(𝑥)) (1)

where 𝑁 is the set of all NATO phonetic alphabet words
and 𝑠𝑐𝑜𝑟𝑒() is the chosen metric. A Levenshtein distance is
converted to the score metric as follows:

LevScore(𝑥) = 1 − 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑥, 𝑡𝑜𝑘𝑒𝑛)
max(𝑙𝑒𝑛(𝑥), 𝑙𝑒𝑛(𝑡𝑜𝑘𝑒𝑛)) (2)

where 𝑥 is a NATO alphabet word, and 𝑡𝑜𝑘𝑒𝑛 is one of
the transcribed tokens (NATO-like words). The BLEU score
is already in the [0, 1] interval and can be directly plugged as
the score into Eq. (1).

This approach resembles the human pattern-matching pro-
cess, where a trained human test subject, in the case of



uncertainty, selects the NATO word that is most similar to
the word they hear. The robot then converts the list of NATO
words back to letters and numbers and submits the result as
an answer to the testbed. This process is repeated for every
audio recording within the experiment.

The robot also calculates an overall experiment transcription
accuracy score for each experimental run, which can be
used to estimate the transcription confidence of the robot
on the experiment. The overall score is calculated as the
average accuracy over all impaired audio recordings within
the experiment:

Experiment Score =
𝑆1 + 𝑆2 + 𝑆3 + ... + 𝑆𝑛

𝑛
(3)

where 𝑆𝑛 is a new per-recording score metric and 𝑛 is
number of audio recordings within the experiment. We use two
definitions for 𝑆𝑛, depending on whether the correct answer
for each audio recording is known.

If the experiment metadata includes correct answers, 𝑆𝑛 is
calculated as

𝑆𝑛 = 1 − 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑛𝑢𝑚𝑏𝑒𝑟, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)
max(𝑙𝑒𝑛(𝑛𝑢𝑚𝑏𝑒𝑟), 𝑙𝑒𝑛(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)) (4)

where 𝑛𝑢𝑚𝑏𝑒𝑟 is the transcribed license plate number, and
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the correct answer (ground truth). If the experiment
metadata does not include correct answers, 𝑆𝑛 is calculated as

𝑆𝑛 =
∑︁

𝑤𝑜𝑟𝑑∈𝑡𝑜𝑘𝑒𝑛
𝐿𝑒𝑣𝑆𝑐𝑜𝑟𝑒(𝑡𝑜𝑘𝑒𝑛) (5)

where 𝐿𝑒𝑣𝑆𝑐𝑜𝑟𝑒(𝑡𝑜𝑘𝑒𝑛) is the Levenshtein-based score
metric from Eq. (2). Thus, when the correct answers are
unknown, the overall experiment score is calculated as the
average of the Levenshtein distance sums within each license
plate, i.e., the similarity of the transcribed words to NATO
words determines the overall experiment score.

C. Brief Comparison of ASR Engines

The ASR robot described in Section IV-B works with Ope-
nAI Whisper [5] and Google Speech-to-Text [6] engines. Both
engines take audio recordings as input and produce a text-
based transcription as output. This section briefly compares
the two engines.

1) Google Speech-to-Text (STT): Google STT [6] is a
speech-to-text translation service provided by Google. The
service is hosted in the Google cloud and requires a subscrip-
tion. Access is provided through an API in the Google Cloud
Platform [10]. The API supports streaming audio input and is
capable of real-time translation. The service uses deep learning
neural network algorithms with a proprietary model. This gives
the application limited control over the used model version.

Until recently, Google STT was only available through GCP.
Recently, Google has been offering an on-premises version of
Google STT to trusted customers [11]. This feature is intended
for customers who need to process protected speech and must
meet data residency and compliance requirements.

The Google STT service can be customized using domain-
specific models or model adaptation. Domain-specific models
are pre-trained for specific audio types, sources, or situations.
The following models are available as of October 2023:
long-form content, short utterances (commands or single-
shot speech), video clips, phone calls, command and search,
medical dictation, and conversation. Model adaptation allows
the application to provide hints to help improve the accuracy
of domain-specific terms and phrases. This feature also boosts
certain words or phrases by assigning more weight to some
phrases than others.

In all our experiments, we only use the cloud-based version
of Google STT through the GCP API. We do not use domain-
specific models or model adaptation.

2) OpenAI Whisper: Whisper [5] is an open-source au-
tomatic speech recognition system developed by OpenAI.
The system uses a Transformer-based deep learning neural
network trained on more than 680,000 hours of multilingual
and multitask supervised (paired with transcripts) data from
the internet [12]. Both the model and the inference program
are open source.

Whisper comes in five model sizes (parameter number in
parentheses): tiny (39 M), base (74 M), small (244 M), medium
(769 M), and large (1550 M). The size of the model (number of
parameters) determines hardware requirements. Larger models
generally provide better transcription results at the cost of
running slower.

Whisper comes in the form of a Python library [13] that
could be embedded into a custom application. The application
then simply interacts with Whisper through the API exported
by the package. We used this approach in the ASR robot
described in Section IV-B.

Whisper has been trained on 30-second segments and can
only process audio in chunks of the same length. To transcribe
longer audio segments, Whisper consecutively transcribes
buffered 30-second chunks and implements a heuristic context
window-shifting strategy.

The Python API does not support transcription streaming.
An approximation of streaming could be built by repeatedly
transcribing short chunks of audio, which comes with a
performance penalty.

In all our experiments, we run Whisper with the medium
and large model sizes. Running the large model with accept-
able performance generally requires hardware acceleration (a
GPU).

D. Crowdsourcing Audio Transcriptions to Amazon Mechan-
ical Turk

Amazon Mechanical Turk (MTurk) [14] is a crowdsourcing
marketplace that allows outsourcing human intelligence tasks
to remote workers for a fee. Outsourcing multimedia tasks,
e.g., audio transcription, to crowdsourcing services like MTurk
has been proposed in the academic literature [15], [16],
[17], [18]. The benefits of outsourcing tasks from a tightly
controlled environment (lab) to MTurk workers include better
repeatability, affordability, and generally shorter experiment



completion times. The main drawbacks include the loss of
control over the worker’s (listening) environment and setup
and significant worker (human subject) variability.

We use the MTurk service to recruit human test subjects
for the listening experiment described in Section IV-E. We
designed a new listening experiment for MTurk workers in the
testbed and generated a single link (HTTP URL) to be shared
with all workers through the MTurk platform. Upon accepting
the task, the worker opens the link, which takes them to the
public-facing web UI of our testbed. The testbed first collects
basic demographic information and asks the worker to sign a
consent form. It then generates a unique set of impaired audio
recordings for the worker. The testbed presents a simple UI
where the worker individually listens to the audio recordings
and enters the extracted information (NJ license plate number)
into a web form.

E. Listening Experiment Design

The listening experiment consists of impaired audio record-
ings of NJ license plate numbers encoded with the NATO
phonetic alphabet [7]. The goal is to record the license plate
number in the original (non-NATO) form as accurately as
possible.

The experiment consist of 60 audio recordings generated
with the Google Text-to-Speech (TTS) engine. A female voice
is used for all recordings. Each audio recording begins with
the lead sentence ‘Reporting license plate” followed by an
NJ license plate number encoded with the NATO phonetic
alphabet. A NJ license plate number consists of one letter,
followed by two digits, followed by three letters. We generate
the license plate numbers randomly using a custom tool [19].

Each audio recording is encoded using the P.25 Phase 2 or
AMR wideband codec. The codec bit stream is then impaired
with bit-error bursts according to the Gilbert-Elliot model [20],
[21] for correlated bit error patterns. We keep the state
transition probabilities constant (𝑃𝐺𝐵 = 0.01, 𝑃𝐵𝐺 = 1−𝑃𝐺𝐵)
and only vary the burst size 𝑘 using the following values: 1,
2, 4, 6, 8, 10. Each audio recording is randomly assigned a
combination of the two experimental conditions. The corrupted
bit stream is then decoded back to raw audio data in the WAVE
format.

All test subjects receive the same non-repeating license
plates in a random order. The conditions vary across the
recordings. For example, one participant may receive a record-
ing encoded with the AMR wideband codec with 𝑃𝑔𝑏 = 0.01,
𝐾 = 2, whereas another participant may receive the same
recording encoded with the P.25 Phase 2 codec with 𝑃𝑔𝑏 =

0.01, 𝐾 = 10.
Twenty-nine participants recruited via the Amazon Mechan-

ical Turk service were human test subjects. The participants
completed 1,740 trials (60 each); three trials were excluded
due to an audio playback issue, resulting in 1,737 trials across
all participants.

Following the human-subject trials, the ASR robot was also
used to transcribe the same set of impaired audio recordings
for comparison. We ran the robot three times with Google STT,

Whisper Medium, and Whisper Large engines. The analytic
sample consists of 3,584 trials across the four participant
groups: humans, Google Speech-to-Text, Whisper Medium,
and Whisper Large.

V. ANALYTICAL PROCEDURES

We compare the trial transcriptions to the correct answers to
measure performance and then calculate two accuracy indica-
tors. First, we use correctness as a measure of overall accuracy.
We graph the experiment scores for each experiment run to
visually inspect and descriptively compare the performance of
each subject type (i.e., human test subjects and the three ASR
system variations).

Second, we use a continuous indicator to measure the
degree of accuracy, which is important to consider, given that
even partial license plates can benefit emergency response
situations. As such, we use the Levenshtein distance [3], which
is a measure of the difference between two strings and reflects
the minimum number of single-character edits necessary to
change one string to another string (e.g., correct response).
In this application, the distance reflects the number of single-
character transformations needed to change an incorrect re-
sponse to the correct response. Because the maximum number
of digits/characters on NJ license plates is six, we truncate the
Levenshtein distances at a maximum of six.

We assess these measures across experimental conditions
and between subject types. More specifically, we compare
humans’ and ASR systems’ responses for each combination of
codec and bit error burst size experimental conditions to assess
whether (1) ASR robots perform significantly worse or better
than humans and (2) under which experimental conditions are
the differences between humans and ASR systems largest.

For model parsimony, we analyze the P.25 Phase 2 and
AMR wideband trials separately for each pairwise comparison
of interest (i.e., humans vs. Google Speech-to-Text, humans vs.
Whisper Medium, and humans vs. Whisper Large). We regress
Levenshtein distance onto bit error manipulation and subject
type in linear regression models. We add a multiplicative
interaction term (bit error burst size x subject type) to assess
whether accuracy differs between humans and ASR systems
at each bust size (within each codec). We decompose the
interaction to examine pairwise comparisons between the in-
terest groups to determine whether differences are statistically
significant. Because trials are nested within human participants
or ASR systems, we account for correlated standard errors by
estimating these models using cluster robust standard errors.
Additionally, given the large number of pairwise comparisons
examined (38), we apply a Benjamini-Hochberg correction
[22] to minimize the likelihood of Type I errors by controlling
the expected proportion of falsely rejected hypotheses (i.e., the
false discovery rate).

VI. RESULTS

A. Levenshtein Distance

Normalized Levenshtein distances are compared between
the subject types to assess how the ASR systems perform



across the varied experimental conditions of codec and bit
error burst size. Figure 4 shows the average Levenshtein
distance of answers (normalized for graphing purposes) broken
down by codec and bit error burst size, with lower scores
indicating greater accuracy. Pairwise comparisons show sig-
nificant differences (𝑝 < .001) between humans and Google
Speech-to-Text under all experimental conditions, suggesting
that humans perform significantly better than Google Speech-
to-Text regardless of codec and bit-error bust-size variations.

Comparatively, there is more significant variation in per-
formance between the ASR systems and humans. Under the
AMR wideband codec and 𝐾 = 1 burst size, humans perform
better than Whisper Large, but not to a statistically significant
degree (95% CI [-0.12, 0.04], 𝑝 = .345). Under the P.25
Phase 2 codec and 𝐾 = 1 burst size, both Whisper Medium
(95% CI [-0.04, 0.16], 𝑝 = .274) and Whisper Large (95%
CI [-0.04, 0.16], 𝑝 = .277) perform better than humans, but
not to statistically significant degrees. In all other pairwise
comparisons, humans perform significantly better than the
ASR systems (𝑝 < .001). Interestingly, the Whisper ASR
systems performed better under the P.25 Phase 2 codec for
the two lowest bit error burst sizes (𝐾 = 1 and 𝐾 = 2) but
better under the AMR wideband codec for burst sizes 𝐾 = 4
and larger. In contrast, humans and Google Speech-to-Text
perform better under the AMR wideband codec for all burst
sizes.

Given the focus on understanding quality of experience, we
also assessed how humans’ accuracy varied within codecs.
Under the P.25 Phase 2 codec, human performance consis-
tently declined across the consecutive bit error burst sizes to
a statistically significant degree (𝑝 < .050). In contrast, under
AMR wideband, although humans performed significantly
better at 𝐾 = 1 than 𝐾 = 2 (95% CI [-0.39, -0.07], 𝑝 = .005)
and 𝐾 = 6 than 𝐾 = 8 (95% CI [-0.52, -0.12], 𝑝 = .002),
the difference in performance was not significantly different
between 𝐾 = 2 and 𝐾 = 4 (95% CI [-0.31, 0.04], 𝑝 = .124),
𝐾 = 4 and 𝐾 = 6 (95% CI [-0.39, -0.07], 𝑝 = .128), and
𝐾 = 8 and 𝐾 = 10 (95% CI [-0.31, 0.19], 𝑝 = .626). As such,
AMR wideband appears to be more robust to bit error, with
only two areas of significant reduction in quality of experience
identified by this analysis.

B. Experiment Scores

Experiment scores are compared between the subject types
to assess how the ASR systems perform on each experiment
run compared to the respective human, with higher scores
indicating greater accuracy. As shown in Fig. 5, humans
perform best across all runs, whereas Google Speech-to-Text
performs the worst. Whisper Large generally performs better
than Whisper Medium, with Whisper Large having higher
experiment scores than Whisper Medium in 25 of the 29 runs.

VII. INTERACTIVE EXPERIMENT DESIGN

In line with the goal of further improving the emulation
of challenging, real-world critical missions, we also made
an effort to design interactive human-subject experiments

centered around the commercially available computer game
Keep Talking and Nobody Explodes, developed by Steel Crate
Games in 2015. We modified the game using the Unity
development kit. In this section, we briefly summarize the
game and our experimental design.

1) Game Summary and Objective: Keep Talking and No-
body Explodes is a cooperative game for two communicating
human players. One player manipulates a 3D depiction of
a “bomb” (Fig. 6) on a terminal. The second player has a
"bomb manual" but cannot view the terminal (bomb). The
player at the terminal describes the visual aspects of the bomb
to the player with the manual; the player with the manual
communicates instructions to defuse the bomb to the first
player. Cooperation and the ability to accurately communicate
and comprehend instructions are crucial to accomplishing the
task.

2) Experiment Design: We used the MCV testbed (Sec-
tion IV-A) for all communication between the players. We
recruited participants from Columbia University and the New
York City metropolitan area to perform the defuser role. A
trained FDNY dispatcher performed the manual role (dis-
patcher). The defuser and dispatcher were in separate rooms
and could only communicate through the testbed. The exper-
imenter independently varied the bit error rate (BER) of the
communication channel at the start of each trial.

We created five distinct bomb configurations for the ex-
periment, one for each trial. Each test subject receives the
same configurations. Each bomb configuration contained three
module types (shown in Fig. 6):

• "wires"—the module has 2–5 wires of different colors;
the defuser must select the wires in the correct sequence.

• "buttons"—the module 2–5 buttons of different colors
and configurations; the defuser must press buttons in the
correct sequence.

• "keypad"—a numerical keypad with a word displayed
over the buttons is shown; the defuser must type the
correct keypad sequence.

The defuser has 5 minutes to defuse each bomb config-
uration. In each trial, the defuser signals to the dispatcher
when they are ready to start, and the dispatcher acknowledges,
at which point the timer begins. The defuser and dispatcher
communicate back and forth through the terminals to defuse
the bomb. There is only one correct way to defuse each bomb
module. The defuser must carefully follow the dispatcher’s
instructions. An incorrect interaction with the bomb, e.g.,
pressing the wrong button, counts as a strike. The bomb
explodes after three strikes or when the timer runs out. A
trial is successful when the defuser disables all three modules
before the time limit.

We record the communication impairments configured in
the testbed and the total time to complete the trial in each
experiment.

VIII. DISCUSSION

Our system can utilize both Google Speech-to-Text and
OpenAI Whisper speech recognition engines to perform tran-



Fig. 4. Normalized Levenshtein distance of answers as a function of experimental conditions (codec and bit error burst size). K=1 was under Pgb=0.00,
P=0.00 and all other bit error burst sizes were under Pgb=0.01, P=0.01.

Fig. 5. A comparison of overall experiment scores, converted to percentages,
across twenty-nine experiment runs, one for each human test subject. The
vertical axis allows a comparison of the relative performance of humans
against three ASR robot variations based on the Google Speech-to-Text engine
and two versions of the OpenAI Whisper engine.

scription of impaired audio recordings of NJ license plate num-
bers, and we compare their performance with the performance
of human subjects hired through Amazon Mechanical Turk.

Our findings reveal that, in general, the human test subjects
perform better than all tested ASR robot configurations. In
terms of both percentage accuracy and the "Experiment Score"
metric, the medium and large Whisper models can outper-
form Google Speech-to-Text. We also observe differences in
performance across codecs. Humans perform best on AMR
wideband (vs. P.25 Phase 2) tasks across all burst sizes, but
this accuracy gap is most pronounced at larger burst sizes. This

Fig. 6. Example of "bomb" interface for interactive experiments with Keep
Talking and Nobody Explodes.

intelligibility difference suggests that the codec significantly
contributes to humans’ QoE when performing mission-critical
tasks.

We acknowledge some key limitations in this study. As-
sessing the quality of the ASR system relative to human test
subjects requires running experiments with human test subjects
themselves, which brings several practical and logistical con-
cerns. Scheduling time for subjects to participate, as well as
the overhead in actual experimental setup and execution, could
contribute to being a significant time barrier. The data sets we
used for ASR testing are also relatively small, which could
have influenced the overall performance of those engines.

Additionally, accuracy is the only measure examined in this
study. While accuracy is an important indicator of intelligi-
bility and audio quality, other KPIs are also important when
considering QoE, such as latency and end-to-end access time.



As such, future replications of this work should incorporate
other measures for a more robust understanding of QoE.[23]

We originally planned to conduct the experiments through
in-person two-way communication sessions with trained first
responders in a controlled environment on the Columbia Uni-
versity campus. The onset of the COVID-19 pandemic forced
us to reconsider. We perform a series of listening experiments
instead, first remotely with the human subjects accessing the
testbed from home, then in-person in a lab on the campus.
Due to the difficulties of recruiting trained first responders,
most of our test subjects were Columbia University students
or general-population volunteers.

The pandemic and the general difficulty of finding suitable
test subjects also prompted us to consider using the ASR robot
and Amazon MTurk [14]. We use MTurk to recruit a larger
human test subject population for our listening experiments.
To our knowledge, this is the first study using ASR and MTurk
to investigate MCV communications systems.

IX. RELATED WORK

Outsourcing multimedia tasks to platforms such as Amazon
Mechanical Turk (MTurk) [14] is popular [15]. Marge et
al. investigate the use MTurk as a method for transcription
of spoken language [16]. The study found that MTurk tran-
scriptions are generally accurate. The authors also show how
accuracy could be improved by combining transcriptions from
several MTurk workers using word-level voting according to
the NIST ROVER algorithm [24]. Voran and Catellier [17]
propose the Crowdsourced Modified Rhyme Test (CMRT),
a speech intelligibility test based on the Amazon MTurk
platform which produces results comparable to the laboratory
version of MRT. The authors find CMRT more repeatable and
affordable. CrowdMOS [18] is a collection of tools to perform
mean opinion score (MOS) tests on MTurk.

NIST PSCR has developed methods to measure and quantify
various MCV key quality of experience (QoE) parameters,
including mouth-to-ear (MtE) latency [25] and the time needed
to establish a talk path [26], [27], [28]. Both methods as-
sume a physical system under test (SUT), i.e., existing MCV
communication terminals. The two methods inspire the design
of our testbed. In contrast, we emulate the target MCV
communication system in software with configurable system
parameters rather than relying on physical MCV terminals.

Atkinson and Catellier conducted a human-subject study to
evaluate the intelligibility of two analog FM and two digital
P.25 systems in high-background-noise environments experi-
enced by firefighters [29]. The study found analog FM systems
to have higher intelligibility than digital systems. In some
environments, none of the systems perform well. A follow-
up study [30] found that updated P.25 systems perform better
in noisy environments than analog FM systems. Several PSCR
studies [31], [32], [33], [34] evaluate speech intelligibility of
various digital codecs in different acoustic noise and channel
error environments using the Modified Rhyme Test (MRT).
It is also desirable for MCV systems to transmit secondary
information such as speaker identification or stress. Several

PSCR studies [35], [36], [37] characterize the relationship be-
tween speech intelligibility, speaker identification, and speaker
stress in simulated speech processing conditions. The studies
mentioned in this paragraph inspire the design of the listening
experiments described in Section IV-E.

Mauch and Ewert propose the Audio Degradation Tool-
box (ADT) for controlled degradation of audio signals [38].
The ADT provides configurable degradation units (e.g., add
noise, add sound, high-pass filter, etc.) and a framework
for composing (chaining) the degradations. The toolbox also
provides profiles for common degradations such as smartphone
playback, radio broadcast, or vinyl. Like in the ADT, the
design of the audio degradation subsystem in our MCV testbed
is composable. The testbed provides a broader selection of
audio degradation components, focuses on MCV applications,
and can degrade the audio signal in real time.

X. CONCLUSION AND FUTURE WORK

We designed and implemented software tools for human-
subject experiments with MCV. The tools include a testbed
for designing, conducting, and evaluating human-subject ex-
periments with MCV (Section IV-A) and an ASR robot
(Section IV-B) designed to emulate humans in listening exper-
iments. We conducted a transcription experiment where human
subjects extract NJ license plate numbers from transcoded
and impaired audio recordings. We evaluated the influence of
correlated bit errors on the intelligibility of audio transcoded
with P.25 Phase 2 and AMR wideband codecs. We also
assessed the performance of the ASR robot on such audio.

We used an accuracy indicator based on the Levenshtein
distance to compare the performance of humans and the ASR
robot. We compared humans’ and the robot’s responses for
each combination of codec and bit error burst size to asses (1)
whether the ASR robot performs significantly worse or better
than humans; and (2) under which experimental conditions are
differences the largest. Humans performed the best across all
experiment runs. The ASR robot based on Google Speech-
to-Text (STT) performed the worst. The Whisper Large-based
ASR robot performed better than the Whisper Medium model
in 25 of 29 runs. A pairwise comparison of Levenshtein
distances showed that humans performed significantly better
than Google STT regardless of codec and bit error size
variations. In audio transcoded with the P.25 Phase 2 codec,
the Whisper-based ASR robot performed better than humans
on short bit-error bursts. The difference between human and
ASR performance grows larger with increasing burst size.
These findings suggest that the codec significantly contributes
to humans’ QoE when performing MCV tasks.

We plan to better characterize the “true” performance of the
ASR robot compared to humans in the future. We also intend
to generalize our findings to different languages and accents
within the same language. These investigations will contribute
to a more comprehensive understanding of the applicability
of ASR for MCV-related tasks. We will expand the scope
of our experiments to include additional settings and real-life
situations. We aim to evaluate the performance of the ASR



system in challenging environments, such as high-noise urban
areas, adverse weather conditions, and recordings with low
audio quality.

We will also consider enhancing the overall accuracy of the
ASR system. This entails fine-tuning the model using targeted
training data specific to license plate recognition, optimizing
the architecture to handle specific linguistic and phonetic
characteristics of license plate numbers, and implementing
advanced noise reduction techniques to improve performance
in noisy environments.

SOFTWARE ARTIFACTS

The source code for the MCV testbed and the ASR robot is
available1 under a permissive open-source license. Experimen-
tal impaired audio recordings and anonymized human-subject
answer data are also available 2.
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