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Abstract—With over 20 million units sold since 2015, Amazon
Echo, the Alexa-enabled smart speaker developed by Amazon,
is probably one of the most widely deployed Internet of Things
consumer devices. Despite the very large installed base, surpris-
ingly little is known about the device’s network behavior. We
modify a first generation Echo device, decrypt its communication
with Amazon cloud, and analyze the device pairing, Alexa Voice
Service, and drop-in calling protocols. We also describe our
methodology and the experimental setup. We find a minor
shortcoming in the device pairing protocol and learn that drop-
in calls are end-to-end encrypted and based on modern open
standards. Overall, we find the Echo to be a well-designed device
from the network communication perspective.

I. Introduction

With over 20 million units sold since 2015 [1], Amazon
Echo, the Alexa-enabled smart speaker developed and sold by
Amazon, is probably one of the most widely deployed Internet
of Things (IoT) consumer devices. The Echo found its way
to many homes [2], high school classrooms [3], and some
hotels [4]. Despite the very large installed base, surprisingly
little is known about the device’s network behavior. How secure
is the Wi-Fi connection process? How secure is the connection
to Amazon cloud? Are the calls made from the Echo encrypted?
In this paper, we aim to shed some light on the device’s
encrypted network communication to answer the questions.

We obtained a first generation Amazon Echo and modified its
firmware to make it vulnerable to man-in-the-middle (MITM)
attacks. We then connected the device to a MITM-capable
testbed where we could record, decrypt, and analyze the
network traffic between the device, the companion smartphone
application, and Amazon cloud.
We describe our hardware and firmware modifications, the

methodology, and the design of the testbed. We then record and
analyze the device paring protocol used between the Echo, the
companion smartphone application, and Amazon cloud. Next,
we decrypt and analyze the Alexa Voice Service (AVS) protocol,
focusing on the differences from the publicly documented
AVS API available to third-party developers of Alexa-enabled
products.

We also record, decrypt, and analyze the protocols used by
the Echo’s real-time drop-in communication feature (device
calling and intercom). We find that this feature is based on
modern standard protocols with custom authentication and
authorization. We also find that media streams are end-to-end
encrypted and that the system is designed to keep the stream
within the local (home) network where possible.

The primary contribution of this paper is an analysis
and documentation of encrypted network communication of
Amazon Echo. Specifically, we analyze: 1) the device pairing
protocol (OOB), 2) the AVS protocol, and 3) the Alexa drop-in
calling signaling and media protocols. We also discuss some
of the design tradeoffs and discovered limitations. Given the
large installed base and potentially privacy-invasive nature of
the device, we believe more information about the device’s
network behavior is needed.
The rest of the paper is organized as follows. In Section II

we review literature and work related to Amazon Echo. We
describe the device modifications, methodology, and the design
of our experimental setup in Section III. Section IV analyses
in detail the selected network protocols used by first generation
Amazon Echo. In Section V we discuss some of the limitations
and design tradeoffs discovered in the device pairing and drop-
in calling protocols. We conclude and discuss the limitations
of our approach and potential future work in Section VI.

II. Related Work
Clinton et al. [5] performed a hardware analysis of first

generation Amazon Echo. Firmware extraction from newer
Echo models is discussed in [6]. iFixit published a detailed
teardown guide [7] for the device. We used some of these
findings in our work: the description of debugging pads on
base of the devices and the ability of the Echo to boot from an
external Secure Digital (SD) card. We used a firmware image
obtained from [8] and followed the steps outlined in [9] to
gain access to the Echo’s embedded MultiMediaCard (eMMC)
filesystem.
A security analysis of the Echo is presented in [10]. The

authors performed a variety of attacks including a sound-
based attack, personal identification number (PIN) brute-forcing
attack, replay attack on network traffic, and an attempt to exploit
Amazon Alexa’s application programming interface (API).
While no major vulnerabilities were found, the authors discuss
potential weaknesses in the 4-digit PIN authentication method
and in the wake-word detection algorithm. If successfully
exploited, it may be possible to activate the Echo using a
highly distorted sound sample which will not be recognized
as a wake word by the user, but will be recognized as such by
the Echo. This kind of attack could lead to privacy-invasive
exploitation of the device.
The authors in [11] analyzed the network behavior of two

Echo Dot devices over a 21-day period and created a network
signature of the device from the captured traffic. The robustness
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Fig. 1. Experimental setup with Amazon Echo, Android smartphone with
Alexa app, and a laptop with Mitmproxy. The Android device and the Echo
have been modified to accept Mitmproxy’s certificates.

of the signature will likely be limited due to a small number
of devices and limited datasets.
The paper [12] analyzes the client and cloud components

of the Amazon Alexa ecosystem from a digital forensics
perspective. The authors analyzed available artifacts and
developed a proof-of-concept digital forensic tool with the
ability to collect and analyze the artifacts. The tool uses
official and unofficial APIs and collects artifacts from the
cloud, Amazon Echo, and smartphone devices.
While there have been several studies [13], [14] focusing

on the Echo’s hardware security and network behavior, little
is known about the device’s encrypted traffic. To the best of
our knowledge, our study is the first attempt to document and
analyze Echo’s encrypted network communication.

III. Methodology and Experimental Setup

Fig. 1 shows the architecture of our setup to capture and
decrypt network traffic between Amazon cloud, Echo device,
and Alexa Android application. We used a first generation
Amazon Echo with software version 618622220. The Alexa
application was running on a rooted Huawei Honor 6X
phone with Android 7.0. Our Wi-Fi access point (AP) was a
Linksys WRT1900AC with OpenWRT 17.01.4. Mitmproxy 4.0
(https://mitmproxy.org) was running on a Lenovo X60 laptop
with Ubuntu Linux 18.04. We used tcpdump on the rooted
smartphone to capture pairing traffic between the Echo and the
Alexa app. We also set Mitmproxy’s certificate authority (CA)
as trusted on the Android device.

To access encrypted network traffic between the Echo, Alexa
app and Amazon cloud, we diverted all outgoing network
traffic from the two devices to the laptop with iptables on
the OpenWRT router. The laptop also served as a transparent
network address translator (NAT) and router for all the network
traffic we did not want to decrypt. To decrypt Transport Layer
Security (TLS) traffic, we configured iptables on the laptop to
forward such traffic to Mitmproxy. This was only applied to
TLS connections between the Echo or Alexa app and Amazon
cloud. Mitmproxy performed a MITM attack on the connections,
replacing Amazon server certificates with locally generated
ones. We used Wireshark to decrypt and analyze all captured
network traffic.
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Fig. 2. A modified Amazon Echo with an external SD card and a UART-USB
interface attached to the device’s debugging pads.

We modified the Echo device to make it accept Mitmproxy
server certificates. All our hardware modifications are based
on the work done by the authors in [8], [9]. We exposed the
debugging pads at the bottom of the device and connected a
UART-USB converter to gain access to the serial console used
by the boot loader. We then connected an external SD card to
the remaining pads. The entire hardware modification is shown
in Fig. 2.

We then loaded the firmware image from [8] on the external
SD card and rebooted the device. The custom firmware
had a command line interface enabled, which allowed us to
change the boot procedure. We followed the steps from [9]
to obtain a root shell. In the root shell, we appended the
Mitmproxy CA certificate to file /etc/ssl/certs/ca-certificates.crt.
After another reboot, the Echo would treat TLS connections
modified by Mitmproxy as legitimate, allowing us to decrypt
the communication.

IV. Network Behavior
In this section, we document and analyze three network

protocols used by Amazon Echo: the device pairing protocol
(OOBE), the AVS protocol, and the drop-in calling protocol.
All three protocols are partially or fully encrypted with TLS
on the network.

A. Device Pairing Protocol (OOBE)
The out-of-box experience (OOBE) is a pairing protocol used

to: a) provision a network credential (Wi-Fi network name and
password) into the Echo device, and b) to associate the device
with an Amazon account. This protocol is executed between the
Echo, a pairing client in the form of Amazon Alexa smartphone
app or a web application, and backend services in Amazon
cloud. Pairing must be performed after the device has been
reset to factory defaults, or when the Wi-Fi network becomes
unusable, e.g., due to a Wi-Fi password change. Pairing can
also be manually activated by pressing and holding down the
“dot” button on the Echo.

The pairing exchange takes place over an open temporary
Wi-Fi network created by the Echo. The device creates a
Wi-Fi peer-to-peer (P2P) group and configures itself as the
group owner (GO). The service set identifier (SSID) of the
temporary network is “Amazon-XYZ” where XYZ represents
three digits from the device’s serial number. The Echo can
create a temporary Wi-Fi network regardless of the state of its
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Fig. 3. Data flow diagram of the device pairing protocol (OOBE).
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Fig. 4. Call flow diagram of the device pairing protocol (OOBE).

main Wi-Fi interface, i.e., even when connected as client to
another network on a different channel.

On the temporary network, the Echo configures itself with a
fixed IP address, starts DHCP and DNS servers, and configures
iptables to redirect all DNS requests from connected clients
to its internal DNS server. The internal DNS server has a few
well-known Amazon hostnames and IP addresses hard-wired,
presumably to be able to resolve those even when the device
itself is not connected to the internet. If connected to the internet
during pairing, the Echo forwards (NAT-ed) traffic from the
pairing client to the internet via its main Wi-Fi interface. This
is used by the pairing client to associate the device with the
user’s Amazon account. The Echo audibly announces only the
first connected pairing client with no identification. Multiple
pairing clients can be connected simultaneously.

Fig. 3 shows the data exchanged between the entities involved
in the pairing process. Fig. 4 shows the interaction between the
pairing client, Echo, and Amazon cloud. The Echo provides
a pairing API on TCP ports 8080 and 443. A HTTP server

on port 8080 accepts JSON-serialized Thrift [15] messages for
the path /OOBE. Port 443 is a built-in TCP proxy that forwards
HTTPS connections from the pairing client to Amazon cloud.

The pairing client periodically invokes the ping API method
to determine if it is connected to the correct network on an
Echo in pairing mode. Since different Echo models may use
different static IPs, the client sends the request to several
pre-configured IPs simultaneously. Pairing is initiated with
the first device that correctly acknowledges the ping request.
The ping method serves as a rudimentary service discovery
mechanism. Unlike, e.g., ZeroConf, the ping method can be
used by browser applications such as the pairing application
available at https://alexa.amazon.com.

Upon discovering an Echo in pairing mode (indicated by spin-
ning orange light), the client invokes the getDeviceDetails
method. The method returns basic device information: device
model, serial number, Wi-Fi hardware address, supported lan-
guages, and a pairing X.509 public key certificate (used later).
The client then selects the language and configures Amazon
cloud endpoints corresponding to the device’s geographic
location.

Next, the client determines whether the Echo has any Wi-Fi
credentials configured already and obtains the list of scanned
Wi-Fi networks. In Fig. 4, these two steps are represented
by the getScanList request. The client prompts the user to
select a Wi-Fi network and invokes connectToAP to connect
the Echo to the selected network.
The pairing client encrypts the Wi-Fi credential with AES-

256 in CBC mode using a random secret key. The key is
then encrypted with the public key from the X.509 certificate
returned by getDeviceDetails. The encrypted key and Wi-Fi
credential are then transmitted in the Cryptographic Message
Syntax (CMS) format [16]. The X.509 certificate provided by
the Echo is self-signed and this method is thus vulnerable to
active MITM attacks. The encrypted message can be decrypted
with the openssl command:

openssl smime -decrypt -in <data> -inform pem \
-inkey /var/local/oobe-web-setup.cert

File /var/local/oobe-web-setup.cert can be obtained
from Echo’s firmware image.
The pairing client then obtains a link code from Amazon

cloud via the Echo (steps 3–5 in Fig. 3). The Echo first
submits its device type, serial number, and a secret string
to the createLinkCode API in Amazon cloud. The returned
link code (step 4 in Fig. 3) consists of five alphanumeric
characters and represents the device during registration with an
Amazon user account. The format suggests that the code may
have been designed for scenarios where the user is expected
to transmit the string manually from the device to Amazon
via the web interface. That API appears to be part of a device
rendezvous service, most likely connected to an inventory
database that keeps track of the serial numbers and secrets for
all manufactured devices. The secret string appears to be set
on each Echo during the manufacturing process.
Having received the link code, the pairing client registers
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the device with the user’s Amazon account (step 6 in Fig. 3).
Since the client is connected to the Echo’s pairing Wi-Fi
network, it uses the device as a proxy to reach Amazon cloud
in order to register the device. The client’s request is end-
to-end encrypted with TLS and authenticated with a HTTP
cookie that authenticates the user (obtained in steps 1–2 in
Fig. 3). The client submits the device type, serial number, and
the link code identifying the device to be registered with the
authenticated user’s account. Amazon cloud verifies the link
code and associates the device with the user’s account (steps
7–8 in Fig. 3). These last steps are entirely implemented by
Amazon cloud and we were not able to obtain more information
about them.
The client invokes getRegistrationState on the Echo

to determine registration status. Using its secret, the Echo
queries the rendezvous service for the state of the link code
by periodically posting to the checkLinkCode API. Once
registered, this API returns a private key, an authentication
token (step 9 in Fig. 3), and the human-friendly name assigned
to the device by the user. The private key and the authentication
token are used by the Echo to access Amazon cloud on behalf
of the user. The authentication token is included in every HTTP
request to Amazon services (step 10 in Fig. 3) and appears to
include data encrypted with a symmetric key wrapped with a
public-private key known only to Amazon and an initialization
vector.

The client terminates the pairing process by invoking the
setupComplete method on the Echo, instructing the device
to shut down the temporary Wi-Fi network.

B. Alexa Voice Service (AVS)
The Alexa Voice Service (AVS) is an Amazon cloud

service that provides speech recognition, natural language
understanding, and text to speech capabilities to Amazon Echo
devices. In this section, we briefly describe the proprietary
AVS protocol used by our first generation Amazon Echo. AVS
is also available to third-party developers of Alexa-enabled
products in the form of a public API. The public API is
extensively documented online [17], is based on HTTP/2,
and uses Amazon’s Login With Amazon (LWA) authorization
service [18].
Each Echo maintains a persistent long-term SPDY [19]

connection to an Echo-specific AVS endpoint. Fig. 5 shows the
connection setup phase. The first command sent by the Echo
is NegotiationCommand which authenticates the device. A

portion of the command’s JSON payload is cryptographically
signed with the private key obtained by the device during
pairing. The signed portion contains device type and serial
number, an authentication token (also obtained during pairing),
and a timestamp. The server then immediately notifies the Echo
to refresh the state of various subsystems.

Further communication over the connection is similar to the
public AVS protocol described in [17], with the exception that
the Echo provides interfaces not accessible via the public API
such as the SipClient interface described in Section IV-C. We
omit the rest of the protocol due to space constraints and refer
interested readers to the public AVS documentation.

C. Alexa Drop-in Calling
Alexa drop-in calling can be used to place calls to other

Alexa-enabled Echo devices, to the Alexa smartphone appli-
cation, to selected U.S. phone numbers, or to Skype. In this
section, we take a closer look at the protocols used by this
feature. Uttering a phrase such as “Alexa drop in on . . . ”, “Alexa
call . . . ”, or “Alexa answer” causes the device to establish a two-
way call with another Alexa-enabled device, a phone number,
or a Skype account. The system supports two call types: regular
call and intercom.

Regular calls use the caller’s address book, provided to the
system by the Alexa smartphone app, to look up the callee. If
the callee has Alexa-enabled devices, the call is routed to those
devices. All devices indicate the incoming call simultaneously,
but only one can answer the call. If the callee does not have any
Alexa-enabled devices, the call is routed to a public switched
telephone network (PSTN) or Skype gateway.
In intercom mode, the call is established between Alexa-

enabled devices without the need for the callee to answer the
call. The called device answers automatically, provided that
the callee has granted a “drop-in” permission to the caller. The
caller must specify a particular device to call, not a user or
phone number. Often, this would be another Echo paired with
the same Amazon account, e.g., an Echo in another room.
The drop-in calling feature is entirely based on open

standards. Compatible devices run a Session Initiation Protocol
(SIP) [20] user agent (UA) based on PJSIP v2.7.1. Signaling
is based on SIP with Outbound [21], Path [22], and Globally
Routable UA URI (GRUU) [23] extensions. A media path for
each call is negotiated with Session Traversal Utilities for NAT
(STUN) [24], Interactive Connectivity Establishment (ICE) [25],
and Traversal Using Relays Around NAT (TURN) [26] proto-
cols. Audio is encoded with the Opus codec [27] and the stream
is end-to-end encrypted with AES-256 using Secure Real-
Time Transport Protocol (sRTP) [28] and Session Description
Protocol Security Descriptions (SDES) [29] protocols.

The UA is fully managed by the cloud-based Alexa service
over its persistent (SPDY) control connection. Shortly after
device start, the UA sends a ConfigureCommsRequest pro-
visioning request to Alexa which provides the UA with SIP
registration configuration. The configuration includes the SIP
username, registrar domain, and a registration authorization
credential. The UA establishes and maintains a persistent TLS
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connection to Amazon’s SIP service on non-standard port 443
(HTTPS). We assume the port has been chosen to facilitate
firewall traversal. The UA registers with the SIP service using
the configuration provided by Alexa. All devices associated
with the same Amazon user account register the same SIP
URI. Each UA is also assigned a device-specific SIP URI. The
account-specific SIP URI is used to simultaneously reach all
devices during regular calls. The device-specific SIP URI is
used to reach a particular device during intercom calls.
Having detected an utterance to establish a call, the Alexa

service issues a SipClient.WarmUp command followed by
a SipClient.BeginCall command to the UA. The latter
command includes JSON payload with detailed call-related
configuration: the caller and callee SIP URI, a call authorization
token, available TURN and STUN endpoints, and various
Alexa-specific attributes. Fig. 6 shows an intercom call flow
diagram. The calling UA sends a SIP INVITE to the callee
and notifies Alexa that the call is being established with
a SipClient.OutboundCallRequested message. Once the
call has been accepted, the UA notifies Alexa again with a
SipClient.OutboundCallAccepted message. Both notifica-
tions carry payload describing the state of the UA.

Both media streams between two Echo devices are end-to-end
encrypted. As is common in SIP-based systems, the encryption
key is derived from a master key exchanged in SIP signaling.
Since all SIP signaling takes place over authenticated TLS
connections, the key is secure against eavesdropping attacks.
However, Amazon’s SIP service has access to the master key
(by design) and can thus decrypt the media streams.

Whether media passes through Amazon cloud depends on
network configuration. Fig. 7 shows an architecture diagram
with three possible cases. A call established between two
devices in the same LAN, as is common for intercom calls
between two devices in the same home, remains in the LAN. A
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call placed to a device behind another home router will likely
have media streams forced through a TURN relay in Amazon
cloud. This is common when calling another Amazon user.
Calls to PSTN or Skype are always terminated at a cloud-based
gateway.
Uttering “Alexa hang up” terminates the call. Alexa sends

the request SipClient.EndCall to the UA which sends a
SIP BYE. After the call ended, the UA notifies Alexa with a
SipClient.CallDisconnected message.

The drop-in calling feature uses a custom SIP authentication
method tied to the Alexa service. Each SIP request carries a
proprietary X-authtoken header with a short-lived authoriza-
tion token generated by Alexa. A portion of the token is signed
by a private key tied to the Amazon user account. Only the
Alexa service has access to the key. Since the authorization
token is cryptographically bound to both calling and called
SIP URIs, the UA cannot initiate a call unless authorized by
Alexa. Each call needs a new authorization token.

V. Discussion

The modification shown in Fig. 2 is only effective with the
first generation Echo hardware. Consequently, the MITM attack
described in Section III is harder to perform on newer Echo
models where the firmware applies additional security measures.
Thus, installing a custom CA certificate on the device is harder.
However, the network protocols analyzed in this paper are
compatible with newer Echo models and other parts of the
ecosystem.

Neither the temporary Wi-Fi network nor the pairing protocol
are encrypted and are vulnerable to eavesdropping. An attacker
who could observe the pairing exchange could obtain the link
code and might be able to associate a previously de-registered
device with different Amazon account. A newly purchased
Echo comes pre-registered to the Amazon user account used
to purchase the device. This mechanism effectively prevents
hijacking an Echo using the pairing protocol, as long as the
device is already registered in Amazon cloud.
One of the supported pairing clients is a web application

implemented in JavaScript. In order for the client to be able
to communicate with the Echo device via unencrypted HTTP,



the client itself must be served via unencrypted HTTP. This
is necessary to work around the security limitations imposed
by modern web browsers. The web application is first loaded
via HTTPS and after the user has logged in, the browser is
redirected to a HTTP URL which downloads the JavaScript
pairing client. This design leaves the JavaScript pairing client
vulnerable to code injection by remote attackers.

The custom authentication mechanism used in drop-in call
signaling could use more scrutiny, e.g., to see whether it might
be vulnerable to well-known attacks on SIP-based systems such
as SIP header substitution, downgrade, or media encryption
downgrade. Since the intercom feature in Amazon Echo answers
incoming calls automatically, potential vulnerabilities in the
design of Echo’s SIP infrastructure could turn an Echo device
into a remotely controllable microphone.

VI. Conclusion and Future Work
Despite the very large installed base, not much is known

about Amazon Echo’s network behavior. In this paper, we
analyzed and documented the device pairing protocol (OOBE),
the Amazon Voice Service (AVS) protocol, and the Alexa drop-
in calling protocol used by a first generation Amazon Echo.
We modified the firmware to make the device vulnerable to
MITM attacks. We then mounted a MITM attack against the
device and decrypted the communication between the device,
pairing smartphone application, and Amazon cloud. We also
described the approach and the experimental setup in detail.

We found limitations in the device pairing protocol (OOBE)
which under certain circumstances could be used to associate a
de-registered Echo with a different Amazon account. This vul-
nerability is effectively mitigated by the pre-existing association
of a new device to the purchasing Amazon account. Intercom
calls are authorized with one-time authorization tokens issued
by the Alexa service. Both signaling and media are end-to-end
encrypted and use modern industry standard protocols. Overall,
we find the first generation Amazon Echo to be a well-designed
device from the network communication perspective.

Our experiments were limited to the first generation Amazon
Echo. Later models make the MITM approach considerably
more difficult. This limitation does not change the analysis of
network communication which is the primary contribution
of this paper. The analyzed protocols are compatible and
interoperable with more recent Amazon Echo models.
Analyzing the network communication employed by more

recent Echo models, other smart speaker brands, or analyzing
the communication with other IoT devices on the same LAN
is left for future work.
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