
Connecting the Physical World with Arduino in SECE

Hyunwoo Nam
Department of Electrical Engineering

Columbia University
New York, NY

hn2203@columbia.edu

Jan Janak
Department of Computer Science

Columbia University
New York, NY

janakj@cs.columbia.edu

Henning Schulzrinne
Department of Computer Science

Columbia University
New York, NY

hgs@cs.columbia.edu

Abstract—The Internet of Things (IoT) enables the physical
world to be connected and controlled over the Internet.
This paper presents a smart gateway platform that connects
everyday objects such as lights, thermometers, and TVs
over the Internet. The proposed hardware architecture is
implemented on an Arduino platform with a variety of off-
the-shelf home automation technologies such as Zigbee and
X10. Using the microcontroller-based platform, the SECE
(Sense Everything, Control Everything) system allows users
to create various IoT services such as monitoring sensors,
controlling actuators, triggering action events, and periodic
sensor reporting. We give an overview of the Arduino-based
smart gateway architecture and its integration into SECE.

I. INTRODUCTION

We are developing SECE to create services that integrate
with location and presence, email, Twitter and Facebook,
networked home appliances, and sensors [1], [2]. SECE
is an event-driven system which enables users to design
on-line services for creating communication flows and
controlling physical devices over the Internet. For instance,
a user can set up a rule to have SECE extract meeting
details from his Google calendar, make a Skype group call
from his desk phone, and change his Facebook status to
“I’m on a call”. Based on the location information from
his smartphone, SECE can automatically turn on the home
air conditioner just before coming back home from work.

Although recent home gadgets like smart TVs can
connect to the Internet using Wi-Fi, we cannot assume
that most of the everyday objects (e.g., lights and air
conditioners) have such Internet access. To connect the
non-networked devices to the Internet, SECE uses the
smart gateway based platform. Using a microcontroller-
based platform, SECE allows users to operate, monitor, and
control sensors and actuators remotely over the Internet.

In this paper, we propose an easy way to build a
simple and cost effective home gateway using the Arduino
platform [3]. Arduino is an open-source prototyping plat-
form that provides easy-to-use hardware and programming
environments. It is relatively inexpensive compared to other
microcontroller-based platforms like BeagleBone [4]. In
order to prototype a simple home and building automation
system, we are developing the Arduino-based platform with
various off-the-shelf home automation modules and com-
munication technologies such as Zigbee [5], Bluetooth, and
X10 [6]. It is designed for creating simple IoT applications
that integrate a variety of sensors and actuators within
the SECE system such as monitoring sensors, controlling
actuators, triggering action events, and periodic sensor
reporting.

The remainder of the paper is organized as follows.
The second section of the paper looks at the related
work. In Section 3, we describe the implementation. We
introduce various IoT applications that control a variety of
sensors and actuators over the Internet using the Arduino-
based platform in Section 4. Finally, we summarize our
experiments in Section 5.

II. RELATED WORK

Much work has been done in designing a gateway using
a microcontroller-based platform. Zulkifli et al. take advan-
tage of Arduino and XBee [7] to build a wireless heart rate
monitoring system for sport training [8]. Rao et al. have
implemented a home automation system using the Global
System for Mobile communication (GSM) technology to
control home appliances from mobile phones [9]. Piyare
and Tazil have adopted Bluetooth technology to build a
home automation system [10]. Home appliances are en-
hanced with Arduino to be controlled from mobile phones
over the Bluetooth networks. Gill et al. have developed a
Zigbee-based home gateway that provides interoperability
between Zigbee networks and the Internet for designing a
home automation system [11]. Van Der Werff et al. have
implemented a mobile-based home automation system [12].
To demonstrate a prototype, they have developed a cellular
phone emulator which enables to send SMS messages to
home gateways for controlling home appliances.

Most of the proposed smart gateways are not easy
to be built, and provide limited capabilities. They use a
specific communication technology to monitor sensors or
control home appliances. In this paper, we are developing a
simple but powerful smart gateway combining an Arduino
platform with a variety of off-the-shelf home automation
modules and communication protocols such as Zigbee [5],
infrared, and X10 [6]. Using the Arduino-based platform,
we have implemented IoT applications such as monitoring
sensors, controlling actuators, triggering action events, and
periodic sensor reporting. Based on the set of applications,
SECE will allow users easily to create their own IoT
services.

III. BUILDING A SMART GATEWAY WITH ARDUINO IN
SECE

In this section, we introduce an Arduino platform for
building a smart gateway in SECE. We compare it with
other microcontroller-based platforms such as BeagleBone
[4] and Raspberry Pi [13], and describe the overall com-
munication between the Arduino and the SECE server.

TABLE I: Microcontroller-based platforms

Arduino UNO BeagleBone Raspberry Pi
Model R3 Rev A5 Model B

Processor ATmega328 ARMCortex-A8 ARM11
Clock speed 16 MHz 700 MHz 700 MHz

RAM 2 KB 256 MB 256 MB
Flash 32 KB 4 GB SD

Min. power 42 mA 170 mA 700 mA
Digital input 14 66 8
Analog input 6 7 N/A

Ethernet N/A 10/100 10/100
Dev. IDE Arduino tool Python,Scratch, IDLE,Scratch,

Cloud9/Linux Squeak/Linux
Cost $ 29.95 $ 199.95 $ 35.00

A. Arduino platform

Arduino is an open-source single board microcontroller
which can be connected to a variety of sensors and ac-
tuators for creating interactive objects and environments.
The Arduino programming language is based on Wiring
[14]. Wiring is an open-source programming framework
for microcontrollers. Instead of low-level coding, it has
defined a set of abstractions which make it easier to write
software. The abstractions are functions and libraries writ-
ten in C and C++. The Arduino development environment
(IDE) is written in Java (based on Processing [15]). The
IDE provides a basic debugging environment, and runs
the Arduino boot loader to write a program into Flash
memory on an Arduino board. The Processing graphics
tool and a simplified programming style allow users easily
to communicate with an Arduino board from a computer
via a serial port. The IDE is available on Linux, Windows,
and Mac OS.

B. Other microcontroller-based platforms

In Table I, we briefly compare an Arduino platform
with other popular microcontroller-based platforms such
as BeagleBone [4] and Raspberry Pi [13]. According to
the table above, Arduino and Raspberry Pi are inexpen-
sive, and Raspberry Pi and BeagleBone show powerful
performance. When it comes to the cost and the hardware
performance, it seems like Raspberry Pi is the best choice
at this point. In order to run Raspberry Pi, however,
users need to purchase SD cards and external shields for
connecting analog sensors to the board. Both Raspberry Pi
and BeagleBone run the Linux operating system, which
can run multiple applications at the same time, and be
programmed in many different languages. On the other
hand, Arduino is very simple in design. The Arduino IDEs
allow even non-technical users to create sensor applications
on the Arduino boards. Compared to BeagleBone and
Raspberry Pi, Arduino has the lowest power consumption
and provides the simplest way to interface with external
devices.

C. Arduino-based platform in SECE

To show the feasibility of building sensor and actuator
prototypes in SECE, we select the Arduino UNO. Figure 1
shows the Arduino-based platform in SECE. Many kinds
of off-the-shelf sensors, actuators, and communication
modules are available for the use of designing the IoT

W5100 Access Library

DHCP
DNS

mDNS

I/O

Code

DNS

SD
SECE Interface

SW In FLASH

Arduino with ATmega328

I/
O

 P
o

rt
s

C
fg

 M
e

m

MCU Interface

ARP UDP/TCP/IP

Ethernet MAC and PHY

W5100

Ethernet (RJ45)

Serial I/O

Zigbee

USB

X10

IR

..

Fig. 1: Arduino-based platform in SECE

services within the SECE system. For example, Phidgets
[16] provide a variety of plug and play sensors such as
thermometers and motion detectors. X10 [6] modules are
used to control electrical devices such as lights, projectors,
and TVs over power lines or radio frequencies. We select
XBee [7] modules to access Zigbee [5] networks from the
Arduino boards. For well-known home automation modules
such as Zigbee and X10, the libraries are already available.

In SECE, the Arduino is connected to the SECE server
over TCP/IP. We use the Ethernet shield to connect the Ar-
duino board to the Internet with an RJ-45 cable (Figure 2).
The standard Internet protocols such as TCP/IP and DHCP
are supported in the Arduino IDEs. The Arduino commu-
nicates with the SECE server over WebSocket and HTTP.
WebSocket establishes bi-directional and full-duplex com-
munication channels over a persistent TCP connection [17].
Once the WebSocket connection is established, a two-
way communication channel between the Arduino and the
SECE server remains active until the connection has been
closed. The property enables Arduinos behind NATs to
establish a reliable connection to the SECE server. All
communications between the Arduino and the SECE server
are done over TCP port number 80, which is of benefit for
environments where firewalls do not allow connections to
ports other than 80.

HTTP and JavaScript Object Notation (JSON) are used
for exchanging messages between the Arduino and the
SECE server. JSON is a more light-weight data format
than XML [18], and it is easy for human beings to read
and write. A simple JSON schema can be used to create a

Fig. 2: Arduino Ethernet shield

2

TMP36

Internet

SECE server

ArduinoEthernet shield

Fig. 3: Monitoring temperature using TMP36

message between the Arduino and the SECE server. As an
example, the following JSON message is generated from
the Arduino to report the list of the attached sensors and
actuators on the Arduino to the SECE server.

{ "gateway": "Arduino",
"id": "7A:62:4B:CD:89:12",
"devices": [
{ "name": "TV",

"Pin Number": "D1",
"type": "digital",
"communication": "X10",
"value": "on"},

{ "name": "temperature",
"Pin Number": "A1",
"type": "analog",
"communication": "wired",
"value": "65"}]}

The unique identification of the Arduino consists of the
MAC address of the Arduino and the names of the attached
devices on the Arduino. It can be used for discovering
sensors and actuators in the SECE system.

IV. CONNECTING THE PHYSICAL WORLD WITH
ARDUINO

In this section, we describe a set of experiments to
connect a variety of sensors and actuators to the Internet for
creating simple IoT services in SECE such as monitoring
sensors, controlling actuators, triggering action events, and
periodic sensor reporting. For each service, we connect an
Arduino board to a different set of sensors and communica-
tion technologies such Zigbee, X10, and infrared. Zeroconf
enables Arduinos to register services on local networks.
To discover the Arduinos, we have implemented a Bonjour
application, which also allows users to access the SECE
capabilities on the Arduinos over HTTP.

A. Monitoring sensor reading

1) Sensor reading from Arduino: Arduino enables users
to monitor various kinds of sensors such as thermometers
and motion detectors in real-time. The analog and digi-
tal pins on the Arduino board can all serve as general
purpose input and output pins (GPIO). The ATmega328
microcontroller embedded on the Arduino board contains
the analog-to-digital converter (ADC), which translates the

Fig. 4: Arduino XBee shield and dongle

Internet Zigbee

Arduino

TMP3

6

SECE Server Precision

Light Sensor

XBee

XBee

Arduino

SECE Gateway

Ethernet shield

Fig. 5: Monitoring remote sensors over Zigbee

analog input signal to a number between 0 and 1023 [19].
The integer number is proportional to the amount of the
voltage being applied to the analog input.

Any sensor operating on 5 volts can be directly con-
nected to the Arduino board. As a prototype for monitoring
sensor readings with Arduino, we have implemented a
simple setup to connect the analog sensor to the Arduino
board, and receive the sensor readings from the SECE
server over the Internet (Figure 3). In this experiment,
the TMP36 temperature sensor is attached to the Arduino
board. The sensor has three pins: ground, signal, and 5
volts. It generates 10 mV per degree centigrade on the
signal pin. The math functions in the Arduino IDEs are
used to convert the raw values to temperature measures.
The SECE sensor monitoring application running on the
Arduino converts the temperature data to JSON, and the
Ethernet shield enables the Arduino to send the message
to the SECE server over the Internet.

2) Remote sensor reading over Zigbee: The XBee radio
frequency (RF) modules enable the Arduino boards to
access Zigbee networks. The XBee module uses the IEEE
802.15.4 protocol (the basis for Zigbee), and allows very
reliable and simple communications between microcon-
trollers, computers, systems, and really anything with a
serial port. We use the Arduino XBee shield (Figure 4)
to connect the XBee module to the Arduino board in
the SECE system. The XBee antenna on the module
can communicate up to 100 feet (indoors) and 300 feet
(outdoors) within line-of-sight. XBee libraries are available
for the Arduino IDEs [20].

Figure 5 shows a simple setup to monitor remote sensors
from the SECE server using the Zigbee protocol. In the

3

IR LED

IR DETECTOR

Arduino
IR Detector

(PNA4602)

Arduino

45

Line of sight (5m)

High Output IR LED

LED

Fig. 6: Connecting an IR detector (PNA4602) and an IR
LED to Arduino

experiment, two analog sensors (a TMP36 temperature
sensor and a precision light sensor) are wired on the
Arduino board.

B. Controlling actuators

1) Infrared signals: The Arduino can decode infrared
(IR) signals from remote controls, and generate IR signals
for controlling IR-enabled devices such as DVD players
and TVs. To build the IR sensor prototype in the SECE
system, the PNA4602 IR detector and the high output IR
LED are wired on the Arduino board (Figure 6). The IR
detector has the peak frequency detection at 38 kHz and
the peak LED color at 940 nm. To meet the specification,
we have programmed the Arduino to generate an IR signal
at 38 kHz using the high output IR LED. By experiments,
we determined that the IR detector has a range of 4 to 5
meters.

Most electronic companies comply with the standards of
the consumer IR signals (CIR) such as RC-5, RC-6, and
NEC [21]. The standard IR signals can be obtained from an
on-line IR signal repository [22]. SECE users could provide
the model numbers and brand names of their IR-enabled
devices on the SECE website. SECE automatically searches
and obtains the right set of IR signals from the on-line
repository.

2) X10 protocol: The X10 home automation protocol
enables the Arduino to control electrical devices over
power lines. Almost anything powered by electricity can be
directly plugged into X10 modules or, in some cases, wire-
lessly via 310 MHz in the U.S. and 433 MHz in European
systems (Figure 7). Each command consists of four bits,
and it represents the X10 module identifications and a set
of functions such as on, off, dim, and bright. For instance,
the X10 module can cut power to turn the projector off,
and adjust the amount of power to dim the light.

Fig. 7: X10 RF (left) and PLC (right) transmitters

Internet

SECE server

Arduino X10 PLC

Transmitter

X10 Lamp

Module
LampEthernet shield

Power line

Fig. 8: Controlling devices over power lines using X10

Photo resistor

Internet

SECE server

ArduinoEthernet shield

“ If the lamp is turned on, send

notifications to SECE server ”

Lamp

Fig. 9: Event notification system using a photo resistor

As an example of using the X10 modules in the SECE
system, we have implemented a simple setup to control a
lamp (Figure 8). In the experiment, the X10 power line
control (PLC) transmitter is wired on the Arduino board.
When the Arduino receives a command from the SECE
server over the Internet, it has the X10 PLC transmitter
generate the right X10 signals.

C. Triggering action events

Within SECE, the Arduino gateway can trigger actions
(e.g., pushing notifications and turning on or off switches)
while monitoring sensors in real-time. As shown in Fig-
ure 9, we have designed a simple notification system using
the Arduino, the Ethernet shield, and the photo resistor.
The photo resistor can measure brightness. While reading
the sensor data in real-time, the Arduino also compares
the value with the predefined threshold. The threshold can
be configured through the SECE server over HTTP. If
the measurement is above the threshold, it triggers the
predefined actions. For instance, it can tweet a message to
the SECE users in Twitter saying that “Somebody turned
on the light”, or turn on the air conditioner in the room.

The finite state machine of the event notification system
on the Arduino side is shown in Figure 10. An HTTP PUT
message is used to send a notification to the SECE server.
An HTTP POST message from the SECE server is used to
activate, deactivate, or change parameters of the notification
system.

D. Periodic sensor reporting

When polling, the SECE server periodically sends a
request to the Arduino to obtain a measurement. The timer
function enables the Arduino to deliver sensor readings to
the SECE server at regular time intervals. Once the timer is
activated on the Arduino, it periodically reports a measure-
ment without receiving any further request from the SECE

4

LIGHT

ON

LIGHT

OFF

IF _VALUE > _THRESHOLD

ACTION: NONE

IF _VALUE < _THRESHOLD

ACTION: NONE

IF (_PUSH) && (_VALUE ≤ _THRESHOLD)

ACTION: SEND [PUT /light?v=0]

IF RECEIVED [POST /lightpush?v=1]

ACTION: _PUSH = true

IF (_PUSH) && (_VALUE ≥ _THRESHOLD)

ACTION: SEND [PUT /light?v=100]

IF RECEIVED [POST /lightpush?v=0]

ACTION: _PUSH = false

IF RECEIVED [POST /lightpush?v=1]

ACTION: _PUSH = true

IF RECEIVED [POST /lightpush?v=0]

ACTION: _PUSH = false

 _VALUE: measured light value from light detector

 _THRESHOLD: light value when light turns off

 _PUSH: notification status

From Server:

 POST /lightpush?v=1 : set push function ON

 POST /lightpush?v=0 : set push function OFF

To Server:

 PUT /light?v=100 : send Notification[light turns on]

 PUT /light?v=0 : send Notification[light turns off]

IF (!_PUSH) && (_VALUE ≤ _THRESHOLD)

ACTION: NONE

IF (!_PUSH) && (_VALUE ≥ _THRESHOLD)

ACTION: NONE

Fig. 10: Finite state machine on the Arduino side for the
event notification system

TIMER

ON

TIMER

OFF

IF RECEIVED {POST /temperature_timer_off}

ACTION: NONE

 _TIME: elapsed time since the last notification

 _PERIOD: timer period

 _VALUE: measured temperature value

From Server:

 POST /temperature_timer_on?v=30 : set timer period 30(mins)

 POST /temperature_timer_off : set timer off

To Server:

 PUT /temperature?v=_VALUE : send measured value

IF RECEIVED {POST /temperature_timer_on?v=30}

ACTION: _PERIOD = 30

IF _TIME ≥ _PERIOD

ACTION: _VALUE = DATA FROM SENSOR

 SEND {PUT /temperature?v=_VALUE}

IF _TIME < _PERIOD

ACTION: NONE

Fig. 11: Finite state machine on the Arduino side for the
timer function

server. Unlike triggering action events, the Arduino sends
a message to the SECE server even if there has been no
change in the connected sensors.

The timer function can be also used to periodically
notify the SECE server of the current state of the Arduino
such as the network connectivity and the attached sensor
information. Figure 11 shows the finite state machine on
the Arduino side for implementing the timer function in
the SECE system.

E. Discovering Arduinos in local networks using Zeroconf

A small implementation of Zero configuration network-
ing (Zeroconf) can run on IP-enabled Arduinos to register
services in local networks [23]. It implements multicast
DNS (mDNS) and DNS Service Discovery (DNS-SD).
Using the library, we can register a small web-server that
provides SECE services running on the Arduino in a local
network. The Arduino can be easily discovered by our

Local network

Arduino Lamp

SECE._http._tcp.local

Computer

SECE Bonjour GUI

application

ACTUATOR INFO. &
ACTION BUTTON

MAC ADDRESS OF
CONNECTED ARDUINO

Fig. 12: Connecting to SECE services in local networks
using a SECE Bonjour application

SECE Bonjour GUI application running on a computer
(Figure 12). It allows users to connect to the SECE service
on the local Arduino over HTTP even though the Internet
access is not available. The following steps show how the
Arduino is registered in a local network, and the application
can find and connect to it over HTTP.

a) Register Arduinos: The Arduino performs as a web-
server. Using the Zeroconf library, it can be registered
in the local network with the service (SRV) record:
SECE. http. tcp. local. The host name contains
the MAC address of the Arduino. A text (TXT) record
can be used to announce the list of URLs for users to
connect to the Arduino over HTTP.

b) Browse and resolve IP address: The SECE Bonjour
GUI application running on a computer can discover
the Arduino using the service record. Then, it sends a
DNS query to obtain the host name and port number,
and resolve the IP address of the Arduino.

c) Get service information from Arduinos: The GUI
application uses the obtained IP address and port num-
ber to connect to the Arduino. It can get the service
information provided by the Arduino by visiting the
URL: GET services/list.

d) Access to Arduinos: The GUI application enables
users to send a set of commands to the Arduino
over HTTP (Figure 12). For example, to turn off the
light on the Arduino, a user can push the button on
the GUI, which has the application send an HTTP
POST message (POST /light?v = 0) to control the
Arduino.

We have also developed a Zeroconf mobile application
for Android smartphones to find the local Arduinos that
provide SECE services. As shown in Figure 13, the smart-
phone can discover the Arduinos on the Wi-Fi network,
and obtain the list of available SECE services over HTTP.

5

Wi-Fi

Arduino Lamp

SECE._http._tcp.local

Android

Zeroconf application

Fig. 13: Connecting to SECE services in local networks
from Android smartphones

V. CONCLUSION

This technical report introduces the Arduino-based plat-
form to control non-IP-capable physical devices over the
Internet in SECE. As a selected gateway, an Arduino
platform has the following advantages. Compared to other
microcontroller-based platforms such as BeagleBone and
Raspberry Pi, it is much lighter and simpler weight. For
example, the Arduino IDE allows even non-engineers to
write various sensing applications with rich library re-
sources. Also, it provides a simple way to interface with
a variety of external shields such as Ethernet, Bluetooth,
and XBee. The standard Internet protocols such as UDP,
TCP/IP, and DHCP are already supported in the Arduino
IDEs. Furthermore, it has been shown that many off-
the-shelf home automation sensors and communication
modules such as X10 and Zigbee are compatible with the
Arduino-based platform in SECE.

We have shown that the Arduino-based platform is
suitable for designing simple IoT services within the SECE
system such as monitoring sensors, controlling actuators,
triggering action events, and periodic sensor reporting. Due
to the lack of memory resources, it is difficult to run
multiple applications at the same time on a single Arduino
board. Depending on the service types, we have built
multiple single function devices using Arduinos in SECE.
We have also developed a SECE Bonjour application which
enables users to find Arduinos that provide SECE services
in local networks, and access the SECE capabilities over
HTTP even though the Internet connection is not available.
We expect that even non-technical users can create their
own IoT services by following our Arduino-based sensor
and actuator prototypes in SECE.

REFERENCES

[1] O. Boyaci, V. Beltran, and H. Schulzrinne, “Bridging
communications and the physical world: Sense Everything, Control
Everything,” in Proceedings of the 5th International Conference on
Principles, Systems and Applications of IP Telecommunications, ser.
IPTcomm ’11. New York, NY, USA: ACM, 2011, pp. 14:1–14:6.
[Online]. Available: http://doi.acm.org/10.1145/2124436.2124455

[2] J. Janak, H. Nam, and H. Schulzrinne, “On Access Control in the
Internet of Things,” in IAB Workshop on Smart Object Security,
Paris, France, Mar. 2012.

[3] Official Arduino website. [Online]. Available: http://www.arduino.cc
[4] Official BeagleBoard website. [Online]. Available:

http://beagleboard.org
[5] Zigbee alliances. [Online]. Available: http://www.zigbee.org
[6] X10 home automation modules. [Online]. Available:

http://www.x10.com
[7] Official XBee website. [Online]. Available:

http://www.digi.com/xbee
[8] N. S. A. Zulkifli, F. K. C. Harun, and N. S. Azahar, “XBee wireless

sensor networks for Heart Rate Monitoring in sport training,”
in IEEE International Conference on Biomedical Engineering
(ICoBE), Penang, Malaysia, Feb. 2012, pp. 441–444. [Online].
Available: http://dx.doi.org/10.1109/icobe.2012.6179054

[9] B. Rao, S. Prasad, and R. Mohan, “A Proto-type for Home Automa-
tion using GSM technology,” in IEEE International Conference on
Power, Control and Embedded Systems (ICPCES), Allahabad, India,
Dec. 2010.

[10] R. Piyare and M. Tazil, “Bluetooth based Home Automation System
using Cell phone,” in IEEE 15th International Symposium on
Consumer Electronics (ISCE), Singapore, Singapore, Jun. 2011.

[11] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A Zigbee-based Home
Automation System,” IEEE Trans. on, vol. 55, no. 2, pp. 422 –430,
May 2009.

[12] M. van der Werff, X. Gui, and W. Xu, “A Mobile-based Home
Automation System,” in IEEE 2nd International Conference on
Mobile Technology, Applications and Systems, Guangzhou, China,
Nov. 2005.

[13] Official Raspberrypi website. [Online]. Available:
http://www.raspberrypi.org

[14] Wiring open-source programming framework. [Online]. Available:
http://wiring.org.co

[15] Processing open-source visual programming language. [Online].
Available: http://processingjs.org

[16] Phidgets plug and play sensors and actuators. Phidgets Inc.
[Online]. Available: http://www.phidgets.com

[17] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455,
Dec. 2011.

[18] D. Crockford, “The application/json Media Type for JavaScript
Object Notation (JSON),” RFC 4627, Jul. 2006.

[19] Atmega328 - understanding ADC parameters. Atmel Corporation.
[Online]. Available: http://www.atmel.com/Images/doc8456.pdf

[20] Arduino library for communicating with XBees in API mode.
[Online]. Available: http://code.google.com/p/xbee-arduino/

[21] Data formats for IR remote control. [Online]. Available:
http://www.vishay.com/docs/80071/dataform.pdf

[22] Infrared library resource. [Online]. Available:
http://lirc.sourceforge.net/remotes

[23] Bonjour/Zeroconf with Arduino. [Online]. Available:
http://gkaindl.com/software/arduino-ethernet/bonjour

6

