
Framework for Rapid Prototyping of Distributed
IoT Applications Powered by WebRTC

Jan Janak and Henning Schulzrinne
Department of Computer Science, Columbia University, New York, NY, USA

Email: {janakj,hgs}@cs.columbia.edu

Abstract—We argue that the future of Internet of Things
(IoT) systems, especially when it comes to privacy and security,
lies in distributed IoT applications. Distributed IoT applications
implement a model we call “computation follows data”. In this
model, application modules are deployed directly on IoT devices
that produce sensitive data. Developing such applications is,
however, not easy. Based on our own experience, we identify
the lack of a rapid prototyping and development environment
as the biggest challenge in the development process. In this
paper, we describe a framework that aims to help simplify the
process. The framework provides a web-based user interface with
interactive virtual IO ports and a runtime environment for IoT
device emulation. We also describe a network architecture with
support for WebRTC-based direct device-to-device connections.
The network architecture allows experimentation with an entire
network of IoT devices, both emulated and physical.

Index Terms—WebRTC, Internet of Things

I. INTRODUCTION

The idea of connecting everyday objects and devices to the
Internet, also known as the Internet of Things (IoT), is cer-
tainly not new. Until recently, this technology area was mainly
of interest to researchers, tinkerers, and technology enthusiasts.
The prevalence of commodity embedded platforms, ubiquitous
networking, and affordable cloud infrastructure has generated
interest in IoT systems and applications from a much wider
audience.

The current generation of IoT systems can be characterized
as “data follows computation”. An IoT application or ser-
vice is typically deployed to cloud infrastructure. Individual
devices transfer data to the application in the cloud where
it is processed. This approach has, of course, its advantages
and drawbacks. Developing IoT applications for standardized
cloud infrastructure is much easier and faster than developing
software for embedded devices. The developer can use high-
level languages and convenience libraries without the need
to worry about platform limitations. The drawbacks include
bandwidth and latency limitations, loss of privacy and security
when sensitive sensor data is transferred to the cloud, and a
single point of failure.

There appears to be consensus in the community that a more
distributed architectural style for IoT applications might be
needed. Applications written in the distributed style can be
characterized as “computation follows data”. Such applications
typically provide components that can be deployed close to
the origin of the processed data, i.e., at a nearby gateway
node or onto the sensor node itself. Notable advantages of

this architectural style include improved privacy and security
guarantees, as well as support for additional “closed-loop”
application scenarios. Unfortunately, developing and deploying
reliable distributed IoT applications is difficult.

While there have been efforts to move to a more distributed
IoT application style, the effort is still in its infancy. Based on
our own practical experience, we believe that the biggest obsta-
cle that hinders wider adoption is the lack of a good framework
for rapid experimentation and prototyping with distributed IoT
applications without using real hardware. Various methods of
emulation, simulation, and Computer Aided Design (CAD) are
common in other engineering disciplines. Yet, in the IoT space,
one is often forced to develop on real embedded hardware right
from the start.

In this paper we present some of our efforts towards building
a web-based application framework for rapid development of
distributed IoT applications. We first present the most impor-
tant design considerations and requirements. We then describe
a network architecture and a web application framework for
rapid prototyping of distributed IoT applications with local
computation and direct device-to-device connections. We also
describe one particular approach to emulate applications for
real physical devices, such as the Arduino, with minimal
changes.

The rest of the paper is organized as follows. Section II
presents the most important requirements and design goals
for the framework. In section III we describe the network ar-
chitecture required by the web application framework. Section
IV discusses the design of the web application. In section V
we provide an overview of the implementation details. Section
VI discusses existing prior work and alternative approaches.
Finally, we conclude in section VII.

II. DESIGN GOALS & REQUIREMENTS

In this section we present some of the design goals for the
framework. The list is not exhaustive, but includes the most
important design goals and decisions.

a) Direct device-to-device communication: Where pos-
sible, the framework should make it possible for two devices
(virtual or physical) to establish a direct communication ses-
sion. The devices can then run any application-level specific
protocol over the session. Direct device-to-device communi-
cation is important for various “closed loop” IoT scenarios
where the state of device A directly influences the state
of another device B. Direct communication also minimizes

latency and is an important building block for privacy sensitive
IoT applications.

b) Prototyping without hardware: One of the biggest
obstacles on the path to more distributed IoT applications is the
difficulty of setting up and managing heterogeneous networks
of devices. A distributed IoT application typically consists of
a number of independent sequential processes to be deployed
across nodes in a network. These processes then perform local
computation on the node and setup communication sessions
with other nodes. In a network of heterogeneous devices, each
node may provide a different environment which further com-
plicates the problem. We wanted to take this into consideration
while designing the framework and make it possible to work
with emulated (virtualized) devices. Even low-fidelity device
virtualization can significantly simplify the development of an
initial application prototype.

c) First-class support for browser devices: The increas-
ing popularity and sophistication of web-based applications
and services pushes the envelope of the browser. Over time the
web browser application has turned from a simple formatter
of HTML pages into a fully featured application platform.
Modern browsers support a variety of technologies including
a first class programming language, a protocol stack for real-
time communications, a variety of transports, and support
for persistent data storage. On many mobile devices the web
browser is de-facto the shell and the single most important
application the user will ever use. For these reasons, we would
like to make mobile browser-first devices first class citizens in
a network of IoT devices. Mobile devices (e.g., tablets) could
be used as versatile, programmable user interface components
in an IoT system.

d) Component-based design: We decided to design the
whole framework as extensible from the start. It should be
possible for independent third party developers to provide
extension packages with additional UI elements (widgets).
The system framework should let user import such packages
independently, without the need to wait for an approval from
central authority.

III. NETWORK ARCHITECTURE

Consider a simple network of IoT devices as shown in fig. 1.
That network includes four devices nodes labeled A through
D. The devices are heterogeneous and each node represents
a different type of device found in real-world systems. In
addition to device nodes, the diagram also includes a minimum
set of services necessary for the network to function. The
figure shows two types of network sessions: the thin lines
represent WebSocket signaling connections, the thick lines
represent dynamically negotiated WebRTC data channels.

Each of the four device nodes represents a different device
type. Device A represents mobile devices equipped with a
JavaScript-enabled browser such as tablets or smartphones. In
a real-world system such devices could be used to implement
interactive control panels and dashboards with a web-based
user interface. We assume the browser on the device supports
the WebRTC protocol stack and supports the Data Channel

Device
Directory

WebRTC
Peer

WebSocket
Client

Device A

WebRTC
Peer

WebSocket
Client

Device B

WebRTC
Peer

WebSocket
Client

Device C

WebRTC
Peer

WebSocket
Client

HTTP
Server

Proxy Server

HTTP
Client

Device D

WebSocket
Server

Device
Registrar

TURN
Server

STUN
Server

Supporting Services

AAA
Server

WebRTC
WebSocket
HTTP

Figure 1. An example network architecture with heterogeneous IoT devices
and supporting network services. The network uses WebRTC data channels
to enable direct device-to-device communication where possible. Where not
possible, device-to-device communication is relayed by a TURN server [1] or
a HTTP-RTCWeb proxy. Devices A to C represent WebRTC enabled devices
of various form factors, e.g., tablet with a browser, embedded device, or
a server. Device D represents an IoT device without support for WebRTC
protocols.

API. Device B represents a class of larger embedded IoT de-
vices, typically Linux powered, capable of running a WebRTC
compatible protocol stack. Pretty much any Linux-powered
embedded device would fall into this category. The WebRTC
protocol stack for such devices is available in form of native
libraries. Device C represents a general purpose computational
node, e.g., a server, that provides a virtualization environment
for IoT devices. The node may be running a number of
virtual IoT devices, using Qemu [2], or any other virtualization
technique. Device D represents an IoT device that does not
itself support WebRTC protocols, but may need to directly
communicate with the other devices, e.g., an Arduino-based
device.

The services STUN [3], TURN [1], and AAA are cloud-
based services that that can be shared by any number of
such networks. These are commodity services that can be
provided by a third party, e.g., Google. The device registrar
is a custom hosted service also running in the cloud. The
purpose of the registrar is to keep track of all active device
nodes and maintain an active signaling connection with each
node. The Proxy Server box enables direct device-to-device
communication between devices that support WebRTC peer
signaling and devices that do not. The proxy server would
typically be deployed close to the devices, e.g., on a gateway
node close to device D.

The primary service this network architecture aims to
provide is the possibility to setup a direct communication
session between any two device nodes, in both directions. The
communication session could be either UDP-like unreliable
session or a TCP-like reliable session, depending on applica-
tion requirements. The application may run an arbitrary higher-
level protocol over the session, depending on the application
and use-case. The session setup process is complicated by the
presence of NATs and device nodes that do not provide full
networking services to the application (browser JavaScript).

Without the presence of NATs and other middle boxes,
WebRTC data channels, represented by thicker black lines in

the diagram, enable direct device-to-device communication.
These direct connections are used for all application specific
communication needs, including sensor state queries, state
change subscription and notifications, and sensor data stream-
ing. In the presence of devices behind NATs, a TURN [1]
media relay server is used to relay some of the traffic.

All devices that participate in direct device-to-device con-
nections maintain a persistent signaling channel to a device
registrar server. The registrar server facilitates device discovery
and exchange of signaling messages. It maintains a device
directory database that maps unique device IDs to WebSocket
signaling connections. The signaling channel is only used for
device discovery and WebRTC signaling, i.e., exchanges of
SDP offer-answer messages and ICE candidates [4]. The sig-
naling connections are not directly used by or exposed to IoT
applications, they are used purely for network maintenance.

A. Network Forming

A new device joins the network by establishing a WebSocket
[5] connection to Device Registrar. The address of the registrar,
along with an authentication token for the connection must be
configured out of band. Once the connection is established,
the client sends a JSON-formatted register message to
the registrar. The register message includes a unique ID auto-
generated by the device as well as an authentication token. The
registrar verifies the token against an external AAA server and
enables communication on the connection. The device keeps
the connection open persistently, the registrar will forward
messages from other nodes over the connection.

Once two nodes A and B have joined the same network,
they may attempt to establish a WebRTC peer session. The
session needs to be established once before any of the two
nodes attempt to create a direct device-to-device connection.
To establish a WebRTC peer connection to node B, node A
generates an SDP offer and sends the offer over its signaling
connection, addressed to the unique ID of node B. Node B
generates an SDP answer and sends the answer back to the
unique ID of node A. Finally, the two nodes exchange ICE
candidate messages over the same signaling connection until
the WebRTC peer session is established.

To establish a new direct device-to-device connection, the
devices use the negotiated peer session and open a new
WebRTC Data Channel connection. Multiple data channel
connections may be opened simultaneously between two de-
vices. The devices can run any higher-level protocol over the
connection.

The connection setup is slightly more complicated for
device D which does not contain the WebRTC protocol
stack. Fig. 2 illustrates the process. Device D sends a HTTP
CONNECT request [6] to the proxy node and specifies the
unique ID of the target device (A) in the Request-URI. The
proxy node negotiates and establishes a new data channel to
the target node and sends a 200 response back to device D.
Any traffic sent by D is then transparently forwarded by the
proxy to device A and vice versa, until one of the nodes closes
the connection.

Device D

CONNECT urn:uuid:A HTTP/1.1

Proxy Device A

Offer (Data Channel)

Answer (Data Channel)

ICE Candidate Exchange

Data Channel Open
200 CONNECTED

TCP SCTP

Figure 2. Constrained device D issues HTTP CONNECT request to the proxy
node to establish a tunneled connection to device A The proxy negotiates and
opens a new WebRTC Data Channel connection to device A. Once connected,
the proxy sends a 200 back to D and splices the two connection. Any data
sent over the connection by D will be received by A and vice versa.

IV. WEB APPLICATION

In this section we describe a web application that gets
installed on selected device nodes within the network archi-
tecture. In particular, referring to fig. 1, the application will
be downloaded onto Device A (browser based). The device
runtime component of the application can also be deployed
on the server based Device C.

The main component of the framework is implemented
in form of a web application implemented primarily in
JavaScript. To download the application, the user visits a well-
known URL of the framework and logs in. Upon logging
in, the web application user interface will open in the user’s
browser.

The architecture of the web application is illustrated in
fig. 3. The application consists of two main components:
User Interface (UI) and Device Runtime Environment. For
performance and security reasons, the two components are
designed to run in separate JS contexts. Each JS context is
represented by a WebWorker object running within a separate
OS-level thread. Additional worker threads may be created
at runtime for individual applications, depending on device
configuration.

The user interacts with the application via the UI com-
ponent. The UI provides a means to display a collection of
widgets arranged into virtual control panels. An example panel
with a larger collection of widgets can be seen in figure 5.
Each widget on the panel is internally connected to one of the
virtual ports managed by the device runtime environment. The
widget either displays the state of the port (for output ports),
or provides a means for the user to adjust the port’s state (for
input ports). The UI also provides an interactive drag-and-drop
panel editor (not pictured). The editor can be used to create
new panels or modify existing ones. To add a widget onto a
panel, the user simply drags the widget onto the panel from a
pre-configured widget library. Basic properties of the widget,
e.g., colors, names, or value limits can also be configured in
the editor.

Apart from UI panel widgets which provide interactivity,
virtual ports can also be connected to other sources of data.

Device Runtime Context

Local Storage

Online
Weather
Service

Port Data
History DB

UI Context

Ru
nt

im
e

AP
I

Device
Runtime
Manifest

Pe
er

 C
on

ne
ct

io
n Virtual Port

Virtual Port

Virtual Port

Widget
Libraries

Data Generators

Interactive Widgets

Device API Drivers

DOM

Widget Widget

Widget Widget

Location Motion Vibration

App 1

App 2

App xW
eb

 A
pp

lic
at

io
n

D
ev

ic
e

App
Packages

Network

Figure 3. The architecture and main components of the web application. The application is activated when the user visits the URL of the web interface.
After initialization the UI component downloads a Device Runtime Manifest and configures the runtime environment according to the manifest. One or more
device runtime environments can be created, one for each emulated IoT device.

For example, the user might connect some of the virtual ports
to real sensors provided by the JavaScript platform via the
Device API [7]. Other virtual ports may receive state updates
from online services. Consider a weather service that provides
real time temperature updates for a given location. The user
could implement a simple function to periodically download
the most recent temperature reading and update a selected
virtual port with the value.

The device runtime environment, running in a separate
JavaScript context (thread), emulates an IoT device. The
environment manages a collection of virtual ports which
emulate IO ports found on physical hardware devices. Direct
device-to-device connections to other devices are managed by
the WebRTC protocol stack. The runtime environment may
maintain any number of direct connections at a time. By
default, the runtime environment provides a protocol with a
HTTP-like semantics to query the current state and subscribe
to changes of any of the virtual ports. As the state of virtual
port changes over time, the runtime environment automatically
stores the previous value in a local database. This information
is then available to applications in form of a time series
database for each virtual port.

Without any local applications installed, the only service
that the device runtime environment provides is access to
virtual ports. The user or developer can, however, install
custom applications into the environment (depicted with gray
background in the diagram). If multiple applications are in-
stalled at the same time, each application executes within
its own Web Worker [8]. Applications are implemented in
JavaScript and can access virtual ports and their history data.

The primary purpose of local applications is to implement
filtering and stateful triggering on the virtual port data. Local
applications may also create new virtual ports to enable ap-
plication chaining. Applications are installed into the runtime
environment dynamically at runtime, from packages imported
from external repositories such as Github.

A. Physical Device Emulation

The web application described in previous sections provides
all the features necessary to model non-trivial IoT devices in
the browser. Each such device can provide a set of virtual IO
ports connected to interactive web widgets, or to external web
services providing environmental data. Local computation over
the port data can be implemented with JavaScript processes
running in background threads. Access to the device’s state
and data can be provided via a HTTP-like API running on top
of WebRTC data channels.

This model, although powerful, is not without its draw-
backs: application developers need to familiarize themselves
with custom JavaScript APIs, the application logic must be
implemented in JavaScript, and the resulting code is not easily
portable to real embedded devices. This is not a problem for
applications that have been primarily designed for the browser
environment, e.g., control panels with rich web-based UI, like
the one shown in fig. 5.

Nevertheless, modern JavaScript engines are performant
enough to make emulation of entire embedded IoT devices
possible. In other words, it is possible to take an application
written for an embedded device in a language other than
JavaScript, compile it into JavaScript, and emulate the device

platform entirely in the browser. Device emulation, in addition
to pure virtual devices, would let the user rapidly prototype
and develop distributed IoT applications for heterogeneous
networks of devices, all without the need to have access to
real hardware. We discuss the emulation approach in the rest
of this section and demonstrate the approach for the popular
Arduino platform.

The Arduino board provides a simple 8-bit Atmel CPU with
a small amount of memory [9]. Digital (GPIO), analog, and
a USB port are provided for connecting peripherals (sensors
and actuators). The board can be connected to the Internet
using expansion boards for Wi-FI and Ethernet. Programs
for the Arduino are written in a C++-like language which is
compiled to C and assembler for the target CPU. Only single
threaded applications are supported due to the limitations of
the hardware and platform.

The simplicity of the Arduino platform makes it a suitable
candidate for emulation in the browser. Consider a simple
Arduino program written in C++. The program interacts
with attached sensors and actuators, performs some minimal
amount of processing on the data, and provides access to the
state of device via an attached Ethernet adapter or USB 1. Our
JavaScript framework will make it possible to emulate such an
application in the browser, requiring no or trivial changes to
the source code. To run the Arduino application in the browser,
we need to translate the Arduino C++ code into JavaScript.
Figure 4 illustrates the compilation process.

Package
Manager

emscripten
compiler

Embedded Platform
Abstraction Library

IoT Application
(Python, Lua, C/C++)

asm.js

Application Metadata

JavaScript
Package

Figure 4. An embedded application written in C/C++ is combined with
a platform library, e.g., for the Arduino. The code is compiled with the
Emscripten compiler into a subset of JavaScript called asm.js. The result then
packaged and uploaded to a server from which it can be imported into the
browser JavaScript context.

To make the compilation possible, we first need to provide
an Embedded Platform Abstraction Library. This is a shim
library that translates access to the hardware resources of the
Arduino platform to their emulated counterparts in JavaScript.
Most importantly, the library transparently translates access
to IO ports from Arduino hardware ports to virtual ports in
JavaScript. Our framework will provide platform abstraction
libraries for selected simple embedded platforms.

We first compile the Arduino application with the compiler
provided by the Arduino IDE to generate standard C code.
The generated C code, together with the platform abstraction
library, is then compiled by Emscripten [10]. Emscripten uses
LLVM to compile C/C++ into bytecode and then compiles

1This kind of application is considered a “HelloWorld” application equiv-
alent in many IoT projects

the bytecode into a subset of JavaScript referred to as asm.js
[11]. Asm.js is a low-level, performance optimized subset of
JavaScript that can be directly interpreted by the browser. In
the final step, the framework creates a self-contained package
out of the generated code and metadata provided by the
application and the platform library. The metadata includes
platform configuration information, e.g., the type and number
of virtual ports to create, and other information. The resulting
package is compatible with the npm and jspm package
managers and can be used in the browser or on a Node.JS
server [12].

The generated package can be directly imported into the
device runtime environment like any other application. That
way, developers can use native JavaScript applications to
implement local computation for devices that will always
be running in the browser, e.g., tabled based control panels.
Applications that will eventually be installed on real hardware
can be prototyped in the browser and, eventually, transferred
to real hardware. Browser based prototyping rapidly speeds
up and simplifies the development process of IoT applications
running on IoT devices themselves, as opposed in the cloud.

The Emscripten compiler comes with a large collection of
libraries that re-implement the most common APIs in the
browser. Included are (among others): filesystem emulation,
graphics (SDL, OpenGL), and audio APIs. This opens a
possibility of emulating larger, more sophisticated IoT devices
that provide, e.g., a user interface or multi-media capability.
We only mention this for completeness and to show that IoT
device emulation in the browser might be a promising research
direction. The ability to emulate heterogeneous networks of
devices would open up the possibility of rapid IoT application
development.

V. PROTOTYPE IMPLEMENTATION

In this section we briefly describe an initial prototype
implementation of the web application framework.

The bulk of the framework is implemented in form of
a single-page JavaScript application. The web application is
implemented in the upcoming ES6 (Ecmascript 2015) dialect
of JavaScript, compiled by Babel to a dialect that modern
browsers and Node.js understand. The application relies heav-
ily on the ES6 module API. We use the module API to provide
the possibility to import external widget libraries, provided by
third-parties, into the framework. The same module API is
also used to download and install IoT application code into
the device runtime environment. Our prototype uses the jspm
package manager to locate and download IoT applications and
widget libraries from public repositories such as Github.

The UI component of the web application requires a modern
browser and currently works in recent versions of Google
Chrome only. This component requires some of the more
recent HTML5 APIs that, as of writing this document, do
not seem to be provided in other browsers. The UI itself,
including virtual port widgets, is implemented in form of
reusable ReactJS components. We choose ReactJS because the
framework makes it easy to design complex, highly interactive

UIs without the need to deal with the complexities of DOM
updates.

As of the time of writing this document, the framework does
not include support for native applications described in section
IV-A. Nevertheless, we have experimentally verified that it
is indeed possible to compile a simple Arduino application
into JavaScript and run it emulated in the browser. Support
for compiled native applications together with an Arduino
platform library will be included in a future version.

The Websocket Server and Device Registrar services have
been implemented on top of Node.js, using the the ws npm
package. Currently, the only purpose of the WebSocket signal-
ing server is to facilitate an exchange of WebRTC offer-answer
messages and to enable device discovery. The server authen-
ticates incoming WebSocket connections from clients against
an external authentication service. The authentication is based
on HTTP cookies and OAuth2 bearer tokens submitted by the
client in the initial HTTP upgrade request. The WebSocket
server relays messages among the connected clients based on
their registered addresses (randomly generated UUIDs). The
registrar is a custom JavaScript application which keeps track
of registered device addresses and translates those addresses
to WebSocket connection identifiers. The information about
device addresses and connection identifiers is stored in a
REDIS memory database.

The HTTP Proxy Server is also implemented in JavaScript
on top of Node.JS, but runs in a separate server instance. The
proxy server includes a server-based WebRTC peer implemen-
tation based on the native openwebrtc library. The WebRTC
peer is used to enable direct data channels connections with
other WebRTC enabled devices. The HTTP proxy is imple-
mented on top of the Express framework.

The HTTP-only Device D is a BeagleBone Black device
running Linux with a custom application implemented in
Python. This device does not support WebRTC signaling and
is used to demonstrate the functionality of the WebRTC-HTTP
proxy. The device keeps a subscription to some of the virtual
ports in one of the browser devices.

In addition to the components described above, the system
relies on a few external services provided by Google. These
services include STUN [3] and TURN [1] servers, as well as
the HTTP DNS Resolver API (for resolving domain names in
JavaScript).

VI. BACKGROUND AND RELATED WORK

The idea to use the WebRTC protocol stack [13] for
communication in IoT systems is not new and it is not the
only approach. Nevertheless, it is the only approach that is
readily available in modern browsers which are a significant
component of our architecture. An implementation for embed-
ded devices is available in form of a native WebRTC library.

The web application uses the JavaScript Device API to
gain access to real physical sensors available on the platform
running the browser. The set of sensors provided via the API
is limited. The authors of Maverick discuss a better approach
in their paper [14].

Figure 5. An example of a control panel showing an assorted collection
of port view widgets. Each widget is connected to a virtual port and either
controls the port or displays its value. The application provides a drag and
drop UI to create such panels. The panel is running in the Chrome browser
on a mobile device (tablet).

The topic of device emulation and simulation has also
received considerable attention from the research community.
A variety of Arduino emulators exist on the market [15],
[16]. The qemu emulator [2] is a general purpose platform
emulator that can emulate a large collection of platforms and
devices. Most of the existing emulators require the installation
of custom software on user’s computer, provide no support for
networks of devices, and cannot be used with different devices
at the same time. The framework that we envision in this paper
addresses some of these shortcomings. Viptos is a graphical
simulation environment for Cyber-Physical Systems [17].

Instead of doing emulation in JavaScript, an alternative
approach might be to run an emulation environment on the
server and access it remotely via an API. This is an approach
taken by Mininet [18] in the context of network emulation.

Some ideas behind the web-based control panel and widgets
have been inspired by the programming language Scratch [19].

The development and deployment of distributed applications
has received some attention in the context of Wireless Sensor
Networks (WSN) [20]. Nevertheless, the primary focus in
WSN is on communication, rather than computation. We are
not aware of any attempts to reuse these ideas in the IoT
context.

A. WebRTC Protocol Stack

Our network architecture and the prototype web application
relies heavily on the WebRTC protocol stack. The protocol
stack has been primarily developed for direct browser-to-
browser media connections, e.g., video calls from the browser.
Our framework currently uses a subset of the stack only,
namely, we use the Data Channel API to implement direct
device-to-device communication.

WebRTC implements the data channel using the Stream
Control Transmission Protocol (SCTP) [21]. We use the
SCTP protocol in ordered (reliable) mode to emulate TCP
connections. In WebRTC, the SCTP protocol communication
is encrypted using DTLS [21] and encapsulated in UDP.

In order to setup the SCTP connection, the two browsers
need to learn the IP address of the remote peer and negotiate
session parameters. WebRTC uses the SDP offer-answer model
[22] to negotiate parameters and ICE [4] and STUN [3]
protocols to learn IP addresses. All communication during the
negotiation phase between the two browsers takes place over
a WebSocket [5] signaling connection.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have argued that the initial development
and prototyping of distributed IoT applications is a complex
task. This is due to missing tools and abstractions which forces
developers to perform this initial prototyping on real hardware.

We have presented an architectural design and early pro-
totype implementation of a web-based application frame-
work that attempts to address some of these obstacles. The
framework provides a web-based user interface where the
user or developer can quickly create interactive widgets. The
application also provides a runtime environment for device
emulation. Finally, the proposed network architecture makes it
possible to build networks of such nodes and integrate devices
emulated in the browser with real physical devices.

We have also described an approach towards emulating
other device platforms that are not based on JavaScript, namely
the Arduino. We have experimentally verified on simple ap-
plications that the approach is indeed feasible. The current
version of our application does not include this functionality.
We intend to add support for this feature in a future version
of the platform.

A. Acknowledgements

The authors would like to acknowledge Martin Wandtke and
Claudia Armbruster, visiting students from UniBW Munich,
for their contribution to the implementation of the initial
framework prototype. We would also like to thank Tim Es-
chert, visiting student from RWTH Aachen for help with
development and experimentation.

REFERENCES

[1] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN),” RFC 5766 (Proposed Standard), Internet
Engineering Task Force, Apr. 2010. [Online]. Available: http:
//www.ietf.org/rfc/rfc5766.txt

[2] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[3] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN),” RFC 5389 (Proposed Standard), Internet
Engineering Task Force, Oct. 2008, updated by RFC 7350. [Online].
Available: http://www.ietf.org/rfc/rfc5389.txt

[4] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” RFC 5245 (Proposed Standard), Internet Engineering
Task Force, Apr. 2010, updated by RFC 6336. [Online]. Available:
http://www.ietf.org/rfc/rfc5245.txt

[5] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455
(Proposed Standard), Internet Engineering Task Force, Dec. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6455.txt

[6] R. Khare and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,”
RFC 2817 (Proposed Standard), Internet Engineering Task Force,
May 2000, updated by RFCs 7230, 7231. [Online]. Available:
http://www.ietf.org/rfc/rfc2817.txt

[7] “Device apis working group,” http://www.w3.org/2009/dap, Accessed:
Apr. 2014.

[8] “The WebWorker API,” https://html.spec.whatwg.org/multipage/
workers.html, Accessed: Jul. 2016.

[9] “The Arduino,” http://www.arduino.cc/, Accessed: Jan. 2013.
[10] “The Emscripten Project,” http://emscripten.org/, Accessed: Jul. 2016.
[11] “The Asm.js Project,” http://asmjs.org, Accessed: Jul. 2016.
[12] “Node JS,” http://nodejs.org, Accessed: Apr. 2014.
[13] “WebRTC 1.0: Real-time communication between browsers,” https:

//www.w3.org/TR/webrtc/, Accessed: Jul. 2016.
[14] D. W. Richardson and S. D. Gribble, “Maverick: Providing Web Appli-

cations with Safe and Flexible Access to Local Devices,” in Proceedings
of the 2011 USENIX Conference on Web Application Development (June
2011), vol. 11. USENIX Association, 2011.

[15] “Code:blocks,” http://arduinodev.com/codeblocks/, Accessed: Jul. 2016.
[16] “Circuits.io,” http://circuits.io, Accessed: Jul. 2016.
[17] E. Cheong and Y. Zhao, “Viptos: a graphical development and simulation

environment for tinyOS-based wireless sensor networks,” in SenSys.
New York, New York, USA: ACM Press, 2005, p. 302.

[18] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging net-
working experiments and technologies. ACM, 2012, pp. 253–264.

[19] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch Programming Language and Environment,” ACM Transactions
on Computing Education, vol. 10, no. 4, pp. 1–15, 2010.

[20] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract task
graph: A methodology for architecture-independent programming of
networked sensor systems,” in Proceedings of the 2005 Workshop on
End-to-end, Sense-and-respond Systems, Applications and Services, ser.
EESR ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 19–24.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1072530.1072535

[21] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), Internet Engineering Task Force, Sep. 2007,
updated by RFCs 6096, 6335, 7053. [Online]. Available: http:
//www.ietf.org/rfc/rfc4960.txt

[22] J. Rosenberg and H. Schulzrinne, “An Offer/Answer Model with
Session Description Protocol (SDP),” RFC 3264 (Proposed Standard),
Internet Engineering Task Force, Jun. 2002, updated by RFC 6157.
[Online]. Available: http://www.ietf.org/rfc/rfc3264.txt

http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc5389.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc2817.txt
http://www.w3.org/2009/dap
https://html.spec.whatwg.org/multipage/workers.html
https://html.spec.whatwg.org/multipage/workers.html
http://www.arduino.cc/
http://emscripten.org/
http://asmjs.org
http://nodejs.org
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
http://arduinodev.com/codeblocks/
http://circuits.io
http://dl.acm.org/citation.cfm?id=1072530.1072535
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc3264.txt

	Introduction
	Design Goals & Requirements
	Network Architecture
	Network Forming

	Web Application
	Physical Device Emulation

	Prototype Implementation
	Background And Related Work
	WebRTC Protocol Stack

	Conclusions and Future Work
	Acknowledgements

	References

